Skip to main content

Advertisement

Log in

Advancement in the routine identification of anaerobic bacteria by MALDI-TOF mass spectrometry

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

We evaluated matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) Biotyper as a tool for the identification of anaerobic bacteria compared with 500 base-pair (bp) 16S ribosomal ribonucleic acid (rRNA) gene sequencing analysis, which is considered to be the “gold standard” method. A total of 484 anaerobic bacteria were retrieved from the clinical specimens of 318 pediatric patients. Molecular identification resulted in 18 genera and 51 species. The most prevalent genus was Clostridium (76.85 %), with 70 % C. difficile isolates. The concordance and sensitivity determined by MALDI-TOF MS for C. difficile, the most prevalent species isolated, was 94.08 %, whereas the specificity was 100 %. For the other anaerobes, the sensitivity and specificity were 94.07 % and 81.82 %, respectively, with a concordance of 93.15 %. Low performance was observed for Propionibacterium acnes and Fusobacterium nucleatum, for which a dedicated pretreatment procedure should likely be set up. MALDI-TOF MS was shown to be a valid alternative for the fast and reliable identification of the most clinically relevant anaerobic bacteria; moreover, it is less time-consuming, the cost for reagents is minimized, and it does not require dedicated personnel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brook I (2011) Anaerobic infections in children. Adv Exp Med Biol 697:117–152

    Article  PubMed  Google Scholar 

  2. Nagy E (2010) Anaerobic infections: update on treatment considerations. Drugs 70:841–858

    Article  PubMed  CAS  Google Scholar 

  3. Jousimies-Somer HR, Summanen PH, Baron EJ, Citron DM, Wexler HM, Finegold SM (2002) Wadsworth-KTL anaerobic bacteriology manual. Star Publishing, Belmont

    Google Scholar 

  4. La Scola B, Fournier PE, Raoult D (2011) Burden of emerging anaerobes in the MALDI-TOF and 16S rRNA gene sequencing era. Anaerobe 17:106–112

    Article  PubMed  Google Scholar 

  5. Mellmann A, Bimet F, Bizet C, Borovskaya AD, Drake RR, Eigner U et al (2009) High interlaboratory reproducibility of matrix-assisted laser desorption ionization-time of flight mass spectrometry-based species identification of nonfermenting bacteria. J Clin Microbiol 47:3732–3734

    Article  PubMed  CAS  Google Scholar 

  6. Veloo AC, Welling GW, Degener JE (2011) The identification of anaerobic bacteria using MALDI-TOF MS. Anaerobe 17:211–212

    Article  PubMed  CAS  Google Scholar 

  7. De Carolis E, Posteraro B, Lass-Flörl C, Vella A, Florio AR, Torelli R et al (2012) Species identification of Aspergillus, Fusarium and Mucorales with direct surface analysis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Microbiol Infect 18:475–484

    Article  PubMed  Google Scholar 

  8. Del Chierico F, Masotti A, Onori M, Fiscarelli E, Mancinelli L, Ricciotti G et al (2012) MALDI-TOF MS proteomic phenotyping of filamentous and other fungi from clinical origin. Proteomics 75:3314–3330

    Article  PubMed  Google Scholar 

  9. Putignani L, Del Chierico F, Onori M, Mancinelli L, Argentieri M, Bernaschi P et al (2011) MALDI-TOF mass spectrometry proteomic phenotyping of clinically relevant fungi. Mol Biosyst 7:620–629

    Article  PubMed  CAS  Google Scholar 

  10. Steensels D, Verhaegen J, Lagrou K (2011) Matrix-assisted laser desorption ionization-time of flight mass spectrometry for the identification of bacteria and yeasts in a clinical microbiological laboratory: a review. Acta Clin Belg 66:267–273

    PubMed  CAS  Google Scholar 

  11. Veloo AC, Knoester M, Degener JE, Kuijper EJ (2011) Comparison of two matrix-assisted laser desorption ionisation-time of flight mass spectrometry methods for the identification of clinically relevant anaerobic bacteria. Clin Microbiol Infect 17:1501–1506

    Article  PubMed  CAS  Google Scholar 

  12. Justesen US, Holm A, Knudsen E, Andersen LB, Jensen TG, Kemp M et al (2011) Species identification of clinical isolates of anaerobic bacteria: a comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry systems. J Clin Microbiol 49:4314–4318

    Article  PubMed  CAS  Google Scholar 

  13. Clarridge JE 3rd (2004) Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev 17:840–862

    Article  PubMed  CAS  Google Scholar 

  14. Drancourt M, Berger P, Raoult D (2004) Systematic 16S rRNA gene sequencing of atypical clinical isolates identified 27 new bacterial species associated with humans. J Clin Microbiol 42:2197–21202

    Article  PubMed  CAS  Google Scholar 

  15. Justesen US, Skov MN, Knudsen E, Holt HM, Søgaard P, Justesen T (2010) 16S rRNA gene sequencing in routine identification of anaerobic bacteria isolated from blood cultures. J Clin Microbiol 48:946–948

    Article  PubMed  CAS  Google Scholar 

  16. Stîngu CS, Rodloff AC, Jentsch H, Schaumann R, Eschrich K (2008) Rapid identification of oral anaerobic bacteria cultivated from subgingival biofilm by MALDI-TOF-MS. Oral Microbiol Immunol 23:372–376

    Article  PubMed  Google Scholar 

  17. Veloo AC, Erhard M, Welker M, Welling GW, Degener JE (2011) Identification of Gram-positive anaerobic cocci by MALDI-TOF mass spectrometry. Syst Appl Microbiol 34:58–62

    Article  PubMed  CAS  Google Scholar 

  18. Fontana C, Favaro M, Pelliccioni M, Pistoia ES, Favalli C (2005) Use of the MicroSeq 500 16S rRNA gene-based sequencing for identification of bacterial isolates that commercial automated systems failed to identify correctly. J Clin Microbiol 43:615–619

    Article  PubMed  CAS  Google Scholar 

  19. Clinical and Laboratory Standards Institute (CLSI) (2008) Interpretive criteria for identification of bacteria and fungi by DNA target sequencing; Approved guideline. CLSI document MM18-A. CLSI, Wayne, PA

  20. Sakamoto M, Benno Y (2006) Reclassification of Bacteroides distasonis, Bacteroides goldsteinii and Bacteroides merdae as Parabacteroides distasonis gen. nov., comb. nov., Parabacteroides goldsteinii comb. nov. and Parabacteroides merdae comb. nov. Int J Syst Evol Microbiol 56:1599–1605

    Article  PubMed  CAS  Google Scholar 

  21. Cherkaoui A, Hibbs J, Emonet S, Tangomo M, Girard M, Francois P et al (2010) Comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry methods with conventional phenotypic identification for routine identification of bacteria to the species level. J Clin Microbiol 48:1169–1175

    Article  PubMed  CAS  Google Scholar 

  22. Nagy E, Becker S, Kostrzewa M, Barta N, Urbán E (2012) The value of MALDI-TOF MS for the identification of clinically relevant anaerobic bacteria in routine laboratories. J Med Microbiol 61:1393–1400

    Article  PubMed  CAS  Google Scholar 

  23. van Veen SQ, Claas EC, Kuijper EJ (2010) High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J Clin Microbiol 48:900–907

    Article  PubMed  Google Scholar 

  24. Vega-Castaño S, Ferreira L, González-Ávila M, Sánchez-Juanes F, García-García MI, García-Sánchez JE et al (2012) Reliability of MALDI-TOF mass spectrometry in the identification of anaerobic bacteria. Enferm Infecc Microbiol Clin 30:597–601

    Article  PubMed  Google Scholar 

  25. Fournier R, Wallet F, Grandbastien B, Dubreuil L, Courcol R, Neut C et al (2012) Chemical extraction versus direct smear for MALDI-TOF mass spectrometry identification of anaerobic bacteria. Anaerobe 18:294–297

    Article  PubMed  CAS  Google Scholar 

  26. Khot PD, Couturier MR, Wilson A, Croft A, Fisher MA (2012) Optimization of matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis for bacterial identification. J Clin Microbiol 50:3845–3852

    Article  PubMed  CAS  Google Scholar 

  27. Angelakis E, Roux V, Raoult D, Drancourt M (2009) Human case of Atopobium rimae bacteremia. Emerg Infect Dis 15:354–355

    Article  PubMed  Google Scholar 

  28. Kumar PS, Griffen AL, Barton JA, Paster BJ, Moeschberger ML, Leys EJ (2003) New bacterial species associated with chronic periodontitis. J Dent Res 82:338–344

    Article  PubMed  CAS  Google Scholar 

  29. Olsen I, Johnson JL, Moore LV, Moore WE (1991) Lactobacillus uli sp. nov. and Lactobacillus rimae sp. nov. from the human gingival crevice and emended descriptions of lactobacillus minutus and Streptococcus parvulus. Int J Syst Bacteriol 41:261–266

    Article  PubMed  CAS  Google Scholar 

  30. Poxton IR, Brown R, Sawyerr A, Ferguson A (1997) Mucosa-associated bacterial flora of the human colon. J Med Microbiol 46:85–91

    Article  PubMed  CAS  Google Scholar 

  31. Brook I (2002) Microbiology of polymicrobial abscesses and implications for therapy. J Antimicrob Chemother 50:805–810

    Article  PubMed  CAS  Google Scholar 

  32. Keys CJ, Dare DJ, Sutton H, Wells G, Lunt M, McKenna T et al (2004) Compilation of a MALDI-TOF mass spectral database for the rapid screening and characterisation of bacteria implicated in human infectious diseases. Infect Genet Evol 4:221–242

    Article  PubMed  CAS  Google Scholar 

  33. Fedorko DP, Drake SK, Stock F, Murray PR (2012) Identification of clinical isolates of anaerobic bacteria using matrix-assisted laser desorption ionization-time of flight mass spectrometry. Eur J Clin Microbiol Infect Dis 31:2257–2262

    Article  PubMed  CAS  Google Scholar 

  34. Lomholt HB, Kilian M (2010) Population genetic analysis of Propionibacterium acnes identifies a subpopulation and epidemic clones associated with acne. PLoS One 5:e12277

    Article  PubMed  Google Scholar 

  35. Shah HN, Keys CJ, Schmid O, Gharbia SE (2002) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and proteomics: a new era in anaerobic microbiology. Clin Infect Dis 35:S58–S64

    Article  PubMed  CAS  Google Scholar 

  36. Thurnheer T, Guggenheim B, Gruica B, Gmür R (1999) Infinite serovar and ribotype heterogeneity among oral Fusobacterium nucleatum strains? Anaerobe 5:79–92

    Article  Google Scholar 

  37. Gaillot O, Blondiaux N, Loïez C, Wallet F, Lemaître N, Herwegh S et al (2011) Cost-effectiveness of switch to matrix-assisted laser desorption ionization-time of flight mass spectrometry for routine bacterial identification. J Clin Microbiol 49:4412

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The preliminary results shown in this paper have been presented in poster format at the 22nd European Congress of Clinical Microbiology and Infectious Diseases (ECCMID), London, United Kingdom, 31 March–3 April 2012. We thank the Scientific Commission of the European Society of Clinical Microbiology and Infectious Diseases for allowing us to display our data at this prestigious congress. We thank our laboratory technicians, Silvia Gobbi, Eugenia Galeno, and Lucrezia Di Pietrantonio, for their labor-intensive bench work. This manuscript has been edited by native English-speaking experts of BioMed Proofreading.

Conflict of interest

The authors declare that they have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Mancinelli.

Additional information

Luana Coltella and Livia Mancinelli contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coltella, L., Mancinelli, L., Onori, M. et al. Advancement in the routine identification of anaerobic bacteria by MALDI-TOF mass spectrometry. Eur J Clin Microbiol Infect Dis 32, 1183–1192 (2013). https://doi.org/10.1007/s10096-013-1865-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-013-1865-1

Keywords

Navigation