Skip to main content
Log in

Evaluation of species-specific score cutoff values of routinely isolated clinically relevant bacteria using a direct smear preparation for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry-based bacterial identification

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was introduced a few years ago as a new method for bacterial identification. A variety of studies have been published concerning MALDI-TOF MS-based identification, most of them using culture collections for the validation of the respective databases in a retrospective manner in favor of a parallel investigation. The score cutoff value is of special importance for reliable species identification in the Biotyper database. The score cutoff values suggested by the manufacturer have been validated using a previously published formic acid extraction protocol. In most of the previously published studies investigating the Biotyper database, only little information was given concerning species-specific score values. In addition, the mass spectrometer instruments, the number of replicates, the number of spectra used to calculate a sum-spectrum by the supplied software, and the score cutoff values which have been applied varied within these studies. In this study, we compared a straightforward direct smear preparation and measurement without replicate testing to defined biochemical identifications in a parallel manner. In addition, we described new species-specific score cutoff values for the identification of certain bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fenselau C, Demirev PA (2001) Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom Rev 20(4):157–171

    Article  PubMed  CAS  Google Scholar 

  2. Carbonnelle E, Beretti JL, Cottyn S, Quesne G, Berche P, Nassif X, Ferroni A (2007) Rapid identification of Staphylococci isolated in clinical microbiology laboratories by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 45(7):2156–2161

    Article  PubMed  CAS  Google Scholar 

  3. Friedrichs C, Rodloff AC, Chhatwal GS, Schellenberger W, Eschrich K (2007) Rapid identification of viridans streptococci by mass spectrometric discrimination. J Clin Microbiol 45(8):2392–2397

    Article  PubMed  CAS  Google Scholar 

  4. Erhard M, Hipler UC, Burmester A, Brakhage AA, Wöstemeyer J (2008) Identification of dermatophyte species causing onychomycosis and tinea pedis by MALDI-TOF mass spectrometry. Exp Dermatol 17(4):356–361

    Article  PubMed  Google Scholar 

  5. Rajakaruna L, Hallas G, Molenaar L, Dare D, Sutton H, Encheva V, Culak R, Innes I, Ball G, Sefton AM, Eydmann M, Kearns AM, Shah HN (2009) High throughput identification of clinical isolates of Staphylococcus aureus using MALDI-TOF-MS of intact cells. Infect Genet Evol 9(4):507–513

    Article  PubMed  CAS  Google Scholar 

  6. Seng P, Drancourt M, Gouriet F, La Scola B, Fournier PE, Rolain JM, Raoult D (2009) Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49(4):543–551

    Article  PubMed  CAS  Google Scholar 

  7. Bizzini A, Durussel C, Bille J, Greub G, Prod’hom G (2010) Performance of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of bacterial strains routinely isolated in a clinical microbiology laboratory. J Clin Microbiol 48(5):1549–1554

    Article  PubMed  CAS  Google Scholar 

  8. Risch M, Radjenovic D, Han JN, Wydler M, Nydegger U, Risch L (2010) Comparison of MALDI TOF with conventional identification of clinically relevant bacteria. Swiss Med Wkly 140:w13095

    PubMed  Google Scholar 

  9. Szabados F, Woloszyn J, Richter C, Kaase M, Gatermann S (2010) Identification of molecularly defined Staphylococcus aureus strains using matrix-assisted laser desorption/ionization time of flight mass spectrometry and the Biotyper 2.0 database. J Med Microbiol 59(Pt 7):787–790

    Article  PubMed  CAS  Google Scholar 

  10. Szabados F, Michels M, Kaase M, Gatermann S (2011) The sensitivity of direct identification from positive BacT/ALERT™ (bioMérieux) blood culture bottles by matrix-assisted laser desorption ionization time-of-flight mass spectrometry is low. Clin Microbiol Infect 17(2):192–195

    Article  PubMed  CAS  Google Scholar 

  11. Poyart C, Quesne G, Boumaila C, Trieu-Cuot P (2001) Rapid and accurate species-level identification of coagulase-negative staphylococci by using the sodA gene as a target. J Clin Microbiol 39(12):4296–4301

    Article  PubMed  CAS  Google Scholar 

  12. Kurtzman CP, Robnett CJ (1997) Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5′ end of the large-subunit (26S) ribosomal DNA gene. J Clin Microbiol 35(5):1216–1223

    PubMed  CAS  Google Scholar 

  13. Relman DA (1993) The identification of uncultured microbial pathogens. J Infect Dis 168(1):1–8

    Article  PubMed  CAS  Google Scholar 

  14. Higgins PG, Lehmann M, Wisplinghoff H, Seifert H (2010) gyrB multiplex PCR to differentiate between Acinetobacter calcoaceticus and Acinetobacter genomic species 3. J Clin Microbiol 48(12):4592–4594

    Article  PubMed  CAS  Google Scholar 

  15. Veloo AC, Erhard M, Welker M, Welling GW, Degener JE (2011) Identification of Gram-positive anaerobic cocci by MALDI-TOF mass spectrometry. Syst Appl Microbiol 34(1):58–62

    Article  PubMed  CAS  Google Scholar 

  16. Sauer S, Freiwald A, Maier T, Kube M, Reinhardt R, Kostrzewa M, Geider K (2008) Classification and identification of bacteria by mass spectrometry and computational analysis. PLoS One 3(7):e2843

    Article  PubMed  Google Scholar 

  17. Prod’hom G, Bizzini A, Durussel C, Bille J, Greub G (2010) Matrix-assisted laser desorption ionization-time of flight mass spectrometry for direct bacterial identification from positive blood culture pellets. J Clin Microbiol 48(4):1481–1483

    Article  PubMed  Google Scholar 

  18. Nagy E, Maier T, Urban E, Terhes G, Kostrzewa M, ESCMID Study Group on Antimicrobial Resistance in Anaerobic Bacteria (2009) Species identification of clinical isolates of Bacteroides by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry. Clin Microbiol Infect 15(8):796–802

    Article  PubMed  CAS  Google Scholar 

  19. Mellmann A, Cloud J, Maier T, Keckevoet U, Ramminger I, Iwen P, Dunn J, Hall G, Wilson D, Lasala P, Kostrzewa M, Harmsen D (2008) Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria. J Clin Microbiol 46(6):1946–1954

    Article  PubMed  CAS  Google Scholar 

  20. Grosse-Herrenthey A, Maier T, Gessler F, Schaumann R, Böhnel H, Kostrzewa M, Krüger M (2008) Challenging the problem of clostridial identification with matrix-assisted laser desorption and ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Anaerobe 14(4):242–249

    Article  PubMed  CAS  Google Scholar 

  21. Moura H, Woolfitt AR, Carvalho MG, Pavlopoulos A, Teixeira LM, Satten GA, Barr JR (2008) MALDI-TOF mass spectrometry as a tool for differentiation of invasive and noninvasive Streptococcus pyogenes isolates. FEMS Immunol Med Microbiol 53(3):333–342

    Article  PubMed  CAS  Google Scholar 

  22. Kumar MP, Vairamani M, Raju RP, Lobo C, Anbumani N, Kumar CP, Menon T, Shanmugasundaram S (2004) Rapid discrimination between strains of beta haemolytic streptococci by intact cell mass spectrometry. Indian J Med Res 119(6):283–288

    PubMed  CAS  Google Scholar 

  23. Lartigue MF, Héry-Arnaud G, Haguenoer E, Domelier AS, Schmit PO, van der Mee-Marquet N, Lanotte P, Mereghetti L, Kostrzewa M, Quentin R (2009) Identification of Streptococcus agalactiae isolates from various phylogenetic lineages by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 47(7):2284–2287

    Article  PubMed  Google Scholar 

  24. Dupont C, Sivadon-Tardy V, Bille E, Dauphin B, Beretti JL, Alvarez AS, Degand N, Ferroni A, Rottman M, Herrmann JL, Nassif X, Ronco E, Carbonnelle E (2010) Identification of clinical coagulase-negative staphylococci, isolated in microbiology laboratories, by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and two automated systems. Clin Microbiol Infect 16(7):998–1004

    PubMed  CAS  Google Scholar 

  25. Jacoby GA (2009) AmpC beta-lactamases. Clin Microbiol Rev 22(1):161–182, Table of Contents

    Article  PubMed  CAS  Google Scholar 

  26. Paauw A, Caspers MP, Schuren FH, Leverstein-van Hall MA, Deletoile A, Montijn RC, Verhoef J, Fluit AC (2008) Genomic diversity within the Enterobacter cloacae complex. PLoS One 3(8):e3018

    Article  PubMed  Google Scholar 

  27. Drancourt M, Bollet C, Carta A, Rousselier P (2001) Phylogenetic analyses of Klebsiella species delineate Klebsiella and Raoultella gen. nov., with description of Raoultella ornithinolytica comb. nov., Raoultella terrigena comb. nov. and Raoultella planticola comb. nov. Int J Syst Evol Microbiol 51(Pt 3):925–932

    Article  PubMed  CAS  Google Scholar 

  28. Stevenson LG, Drake SK, Murray PR (2009) Rapid identification of bacteria in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 48(2):444–447

    Article  PubMed  Google Scholar 

  29. Veloo AC, Knoester M, Degener JE, Kuijper EJ (2011) Comparison of two matrix-assisted laser desorption ionisation-time of flight mass spectrometry methods for the identification of clinically relevant anaerobic bacteria. Clin Microbiol Infect (in press)

  30. Mory F, Alauzet C, Matuszeswski C, Riegel P, Lozniewski A (2009) Evaluation of the new Vitek 2 ANC card for identification of medically relevant anaerobic bacteria. J Clin Microbiol 47(6):1923–1926

    Article  PubMed  Google Scholar 

  31. Veloo AC, Welling GW, Degener JE (2011) Mistaken Identity of Peptoniphilus asaccharolyticus. J Clin Microbiol 49(3):1189

    Article  PubMed  CAS  Google Scholar 

  32. Marklein G, Josten M, Klanke U, Müller E, Horré R, Maier T, Wenzel T, Kostrzewa M, Bierbaum G, Hoerauf A, Sahl HG (2009) Matrix-assisted laser desorption ionization-time of flight mass spectrometry for fast and reliable identification of clinical yeast isolates. J Clin Microbiol 47(9):2912–2917

    Article  PubMed  CAS  Google Scholar 

  33. Qian J, Cutler JE, Cole RB, Cai Y (2008) MALDI-TOF mass signatures for differentiation of yeast species, strain grouping and monitoring of morphogenesis markers. Anal Bioanal Chem 392(3):439–449

    Article  PubMed  CAS  Google Scholar 

  34. Haigh J, Degun A, Eydmann M, Millar M, Wilks M (2011) Improved performance of bacterium and yeast identification by a commercial matrix-assisted laser desorption ionization-time of flight mass spectrometry system in the clinical microbiology laboratory. J Clin Microbiol 49(9):3441

    Article  PubMed  Google Scholar 

  35. Szabados F, Woloszyn J, Kaase M, Gatermann SG (2011) False-negative test results in the Slidex Staph Plus (bioMérieux) agglutination test are mainly caused by spa-type t001 and t001-related strains. Eur J Clin Microbiol Infect Dis 30(2):201–208

    Article  PubMed  CAS  Google Scholar 

  36. Bittar F, Ouchenane Z, Smati F, Raoult D, Rolain JM (2009) MALDI-TOF-MS for rapid detection of staphylococcal Panton–Valentine leukocidin. Int J Antimicrob Agents 34(5):467–470

    Article  PubMed  CAS  Google Scholar 

  37. Szabados F, Becker K, von Eiff C, Kaase M, Gatermann S (2011) The matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS)-based protein peaks of 4448 and 5302 Da are not associated with the presence of Panton–Valentine leukocidin. Int J Med Microbiol 301(1):58–63

    Article  PubMed  CAS  Google Scholar 

  38. Dauwalder O, Carbonnelle E, Benito Y, Lina G, Nassif X, Vandenesch F, Laurent F (2010) Detection of Panton–Valentine toxin in Staphylococcus aureus by mass spectrometry directly from colony: time has not yet come. Int J Antimicrob Agents 36(2):193–194

    Article  PubMed  CAS  Google Scholar 

  39. Johnson JR (2000) Shigella and Escherichia coli at the crossroads: machiavellian masqueraders or taxonomic treachery? J Med Microbiol 49(7):583–585

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Gurpreet Khaira (Vancouver, Canada) for the linguistic advice.

Conflict of interests

The authors certify that there is no actual or potential conflict in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Szabados.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 43 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szabados, F., Tix, H., Anders, A. et al. Evaluation of species-specific score cutoff values of routinely isolated clinically relevant bacteria using a direct smear preparation for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry-based bacterial identification. Eur J Clin Microbiol Infect Dis 31, 1109–1119 (2012). https://doi.org/10.1007/s10096-011-1415-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-011-1415-7

Keywords

Navigation