Skip to main content

Advertisement

Log in

Potentially pathogenic nontuberculous mycobacteria found in aquatic systems. Analysis from a reclaimed water and water distribution system in Mexico City

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

We investigated the presence of nontuberculous mycobacteria (NTM) in three Mexican aquatic systems to evaluate the prevalence with the distribution of NTM species. Key physicochemical parameters of the water samples were determined to find correlations with the species’ distributions. We used multilocus sequence analysis (MLSA) based on hsp65, rpoB, and 16S rRNA fragments to determine their taxonomic affiliations. NTM were recovered from water distribution systems and reclaimed water from the Mexico City Metropolitan Area (MCMA). The isolated species were associated with a temperature of 21°C and pH >7.7. The phylogenetic analysis showed that eight of the 14 different NTM strains were unambiguously classifiable: Mycobacterium peregrinum, M. nonchromogenicum (2), M. smegmatis (2), M. fortuitum, M. avium ssp. hominissuis, M. arupense, M. gordonae, and M. chitae. One strain was tentatively identified as M. mantenni/ scrofulaceum and another strain was related to M. porcinum/M. septicum. All NTM species identified in the water distribution system were also detected in the reclaimed water, but some species from the reclaimed water were not found in the water distribution systems. Two of the identified species found in the reclaimed water, M. avium and M. fortuitum, are considered important human opportunistic pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Le Dantec C, Duguet JP, Montiel A, Dumoutier N, Dubrou S, Vincent V (2002) Occurrence of mycobacteria in water treatment lines and in water distribution systems. Appl Environ Microbiol 68(11):5318–5325

    Article  PubMed  Google Scholar 

  2. Hilborn ED, Covert TC, Yakrus MA, Harris SI, Donnelly SF, Rice EW, Toney S, Bailey SA, Stelma GN Jr (2006) Persistence of nontuberculous mycobacteria in a drinking water system after addition of filtration treatment. Appl Environ Microbiol 72(9):5864–5869

    Article  PubMed  CAS  Google Scholar 

  3. van Ingen J, Blaak H, de Beer J, de Roda Husman AM, van Soolingen D (2010) Rapidly growing nontuberculous mycobacteria cultured from home tap and shower water. Appl Environ Microbiol 76(17):6017–6019

    Article  PubMed  Google Scholar 

  4. Piersimoni C, Scarparo C (2009) Extrapulmonary infections associated with nontuberculous mycobacteria in immunocompetent persons. Emerg Infect Dis 15(9):1351–1358, quiz 1544

    Article  PubMed  Google Scholar 

  5. Cook JL (2010) Nontuberculous mycobacteria: opportunistic environmental pathogens for predisposed hosts. Br Med Bull 96:45–59

    Article  PubMed  Google Scholar 

  6. Bodle EE, Cunningham JA, Della-Latta P, Schluger NW, Saiman L (2008) Epidemiology of nontuberculous mycobacteria in patients without HIV infection, New York City. Emerg Infect Dis 14(3):390–396

    Article  PubMed  Google Scholar 

  7. Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, Holland SM, Horsburgh R, Huitt G, Iademarco MF, Iseman M, Olivier K, Ruoss S, von Reyn CF, Wallace RJ Jr, Winthrop K (2007) An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 175(4):367–416

    Article  PubMed  CAS  Google Scholar 

  8. Weir RE, Black GF, Nazareth B, Floyd S, Stenson S, Stanley C, Branson K, Sichali L, Chaguluka SD, Donovan L, Crampin AC, Fine PE, Dockrell HM (2006) The influence of previous exposure to environmental mycobacteria on the interferon-gamma response to bacille Calmette-Guerin vaccination in southern England and northern Malawi. Clin Exp Immunol 146(3):390–399

    Article  PubMed  CAS  Google Scholar 

  9. Iivanainen E, Martikainen PJ, Vaananen P, Katila ML (1999) Environmental factors affecting the occurrence of mycobacteria in brook sediments. J Appl Microbiol 86(4):673–681

    Article  PubMed  CAS  Google Scholar 

  10. Bland CS, Ireland JM, Lozano E, Alvarez ME, Primm TP (2005) Mycobacterial ecology of the Rio Grande. Appl Environ Microbiol 71(10):5719–5727

    Article  PubMed  CAS  Google Scholar 

  11. Le Dantec C, Duguet JP, Montiel A, Dumoutier N, Dubrou S, Vincent V (2002) Chlorine disinfection of atypical mycobacteria isolated from a water distribution system. Appl Environ Microbiol 68(3):1025–1032

    Article  PubMed  Google Scholar 

  12. Pedley S, Bartram J, Rees G, Dufour A, Cotruvo JA (2004) Pathogenic mycobacteria in water: a guide to public health consequences, monitoring and management. WHO, Geneva

  13. Molina-Gamboa JD, Ponce-de-Leon S, Sifuentes-Osornio J, Bobadilla del Valle M, Ruiz-Palacios GM (1996) Mycobacterial infection in Mexican aids patients. J Acquir Immune Defic Syndr Hum Retrovirol 11(1):53–58

    Article  PubMed  CAS  Google Scholar 

  14. Alvarado-Esquivel C (2009) Molecular analysis of Mycobacterium isolates from extrapulmonary specimens obtained from patients in Mexico. BMC Clin Pathol 9:1

    Article  PubMed  Google Scholar 

  15. Mazari-Hiriart M, Lopez-Vidal Y, Ponce-de-Leon S, Calva JJ, Rojo-Callejas F, Castillo-Rojas G (2005) Longitudinal study of microbial diversity and seasonality in the Mexico City metropolitan area water supply system. Appl Environ Microbiol 71(9):5129–5137

    Article  PubMed  CAS  Google Scholar 

  16. Mazari-Hiriart M, Ponce-de-Leon S, Lopez-Vidal Y, Islas-Macias P, Amieva-Fernandez RI, Quinones-Falconi F (2008) Microbiological implications of periurban agriculture and water reuse in Mexico City. PLoS One 3(5):e2305

    Article  PubMed  Google Scholar 

  17. APHA (2005) Standard methods for examinations of water and wastewater. American Public Health Association, Washington DC

    Google Scholar 

  18. Kamala T, Paramasivan CN, Herbert D, Venkatesan P, Prabhakar R (1994) Isolation and identification of environmental Mycobacteria in the Mycobacterium bovis BCG trial area of South India. Appl Environ Microbiol 60(6):2180–2183

    PubMed  CAS  Google Scholar 

  19. Chimara E, Ferrazoli L, Ueky SY, Martins MC, Durham AM, Arbeit RD, Leao SC (2008) Reliable identification of mycobacterial species by PCR-restriction enzyme analysis (PRA)-hsp65 in a reference laboratory and elaboration of a sequence-based extended algorithm of PRA-hsp65 patterns. BMC Microbiol 8:48

    Article  PubMed  Google Scholar 

  20. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703

    PubMed  CAS  Google Scholar 

  21. Kim H, Kim SH, Shim TS, Kim MN, Bai GH, Park YG, Lee SH, Chae GT, Cha CY, Kook YH, Kim BJ (2005) Differentiation of Mycobacterium species by analysis of the heat-shock protein 65 gene (hsp65). Int J Syst Evol Microbiol 55(Pt 4):1649–1656

    Article  PubMed  CAS  Google Scholar 

  22. Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8(3):175–185

    PubMed  CAS  Google Scholar 

  23. Markowitz VM, Chen IM, Palaniappan K, Chu K, Szeto E, Grechkin Y, Ratner A, Anderson I, Lykidis A, Mavromatis K, Ivanova NN, Kyrpides NC (2010) The integrated microbial genomes system: an expanding comparative analysis resource. Nucleic Acids Res 38(Database issue):D382–D390

    Article  PubMed  CAS  Google Scholar 

  24. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    Article  PubMed  CAS  Google Scholar 

  25. Vinuesa P (2010) Multilocus sequence analysis and bacterial species phylogeny estimation. In: Oren A, Papke RT (eds) Molecular phylogeny of microorganism. Caister Academic Press, pp 41–64

  26. Posada D, Crandall KA (2001) Selecting the best-fit model of nucleotide substitution. Syst Biol 50(4):580–601

    Article  PubMed  CAS  Google Scholar 

  27. Adekambi T, Drancourt M, Raoult D (2009) The rpoB gene as a tool for clinical microbiologists. Trends Microbiol 17(1):37–45

    Article  PubMed  CAS  Google Scholar 

  28. NOM (1997) Norma Oficial Mexicana NOM-001- ECOL-1996. Que establece los límites máximos permisibles de contaminantes en descargas de aguas residuales en aguas y bienes nacionales. Diario Oficial de la Federación, México, D.F

    Google Scholar 

  29. Sebakova H, Kozisek F, Mudra R, Kaustova J, Fiedorova M, Hanslikova D, Nachtmannova H, Kubina J, Vraspir P, Sasek J (2008) Incidence of nontuberculous mycobacteria in four hot water systems using various types of disinfection. Can J Microbiol 54(11):891–898

    Article  PubMed  CAS  Google Scholar 

  30. Falkinham JO 3rd (2009) Surrounded by mycobacteria: nontuberculous mycobacteria in the human environment. J Appl Microbiol 107(2):356–367

    Article  PubMed  CAS  Google Scholar 

  31. Vaerewijck MJ, Huys G, Palomino JC, Swings J, Portaels F (2005) Mycobacteria in drinking water distribution systems: ecology and significance for human health. FEMS Microbiol Rev 29(5):911–934

    Article  PubMed  CAS  Google Scholar 

  32. Clarridge JE 3rd (2004) Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev 17(4):840–862

    Article  PubMed  CAS  Google Scholar 

  33. Gomila M, Ramirez A, Lalucat J (2007) Diversity of environmental Mycobacterium isolates from hemodialysis water as shown by a multigene sequencing approach. Appl Environ Microbiol 73(12):3787–3797

    Article  PubMed  CAS  Google Scholar 

  34. Lee ES, Lee MY, Han SH, Ka JO (2008) Occurrence and molecular differentiation of environmental mycobacteria in surface waters. J Microbiol Biotechnol 18(7):1207–1215

    PubMed  CAS  Google Scholar 

  35. Eskesen AN, Skramm I, Steinbakk M (2007) Infectious tenosynovitis and osteomyelitis caused by Mycobacterium nonchromogenicum. Scand J Infect Dis 39(2):179–180

    Article  PubMed  Google Scholar 

  36. Neonakis IK, Gitti Z, Kontos F, Baritaki S, Petinaki E, Baritaki M, Liakou V, Zerva L, Spandidos DA (2010) Mycobacterium arupense pulmonary infection: antibiotic resistance and restriction fragment length polymorphism analysis. Indian J Med Microbiol 28(2):173–176

    Article  PubMed  CAS  Google Scholar 

  37. Esteban J, Martin-de-Hijas NZ, Fernandez AI, Fernandez-Roblas R, Gadea I (2008) Epidemiology of infections due to nonpigmented rapidly growing mycobacteria diagnosed in an urban area. Eur J Clin Microbiol Infect Dis 27(10):951–957

    Article  PubMed  CAS  Google Scholar 

  38. Thomson RM (2010) Changing epidemiology of pulmonary nontuberculous mycobacteria infections. Emerg Infect Dis 16(10):1576–1583

    PubMed  Google Scholar 

  39. Bruijnesteijn van Coppenraet LE, de Haas PE, Lindeboom JA, Kuijper EJ, van Soolingen D (2008) Lymphadenitis in children is caused by Mycobacterium avium hominissuis and not related to 'bird tuberculosis'. Eur J Clin Microbiol Infect Dis 27(4):293–299

    Article  PubMed  CAS  Google Scholar 

  40. Kaevska M, Slana I, Kralik P, Reischl U, Orosova J, Holcikova A, Pavlik I (2011) "Mycobacterium avium subsp. hominissuis" in neck lymph nodes of children and their environment examined by culture and triplex quantitative real-time PCR. J Clin Microbiol 49(1):167–172

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dra. Florencia Vargas for statical analysis of Table 1, René Arredondo and Josué Sandoval for their assistance with data gathering, Carol Martínez and Martha E Mercado for performing the laboratory work. This study was supported by DGAPA-PAPIIT IN227611, Consejo Nacional de Ciencia y Tecnología (CONACYT) Salud 2007-CO1-68729 M, and CONACyT 60577 M. AICR is the recipient of a CONACYT-México Doctoral Scholarship 130055 at the Programa de Doctorado en Ciencias Biomédicas, UNAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. López-Vidal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castillo-Rodal, A.I., Mazari-Hiriart, M., Lloret-Sánchez, L.T. et al. Potentially pathogenic nontuberculous mycobacteria found in aquatic systems. Analysis from a reclaimed water and water distribution system in Mexico City. Eur J Clin Microbiol Infect Dis 31, 683–694 (2012). https://doi.org/10.1007/s10096-011-1359-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-011-1359-y

Keywords

Navigation