Skip to main content
Log in

Staphylococcus lugdunensis strain with a modified PBP1A/1B expressing resistance to β-lactams

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

We describe for the first time the emergence of an mecA-negative Staphylococcus lugdunensis strain with a modified PBP1A/1B that expresses resistance to all β-lactams. A duplication of the tetrapeptide S569AYG, which is part of the transpeptidase domain of PBP1A/1B and closely located to the K583TG catalytic motif, was associated with this unusual phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Frank KL, del Pozo JL, Patel R (2008) From clinical microbiology to infection pathogenesis: how daring to be different works for Staphylococcus lugdunensis. Clin Microbiol Rev 21:111–133

    Article  PubMed  CAS  Google Scholar 

  2. Clinical and Laboratory Standards Institute (CLSI) (2009) Performance standards for antimicrobial susceptibility testing; nineteenth informational supplement, 10th edn. Approved standard M100-S19. CLSI, Wayne, PA

  3. Wood CA, Wisniewski RM (1994) Beta-lactams versus glycopeptides in treatment of subcutaneous abscesses infected with Staphylococcus aureus. Antimicrob Agents Chemother 38:1023–1026

    PubMed  CAS  Google Scholar 

  4. Petinaki E, Miriagou V, Tzouvelekis LS, Hatzi F, Legakis NJ, Maniatis AN (2002) Evaluation of an anti-PBP 2a slide latex agglutination test in coagulase-negative staphylococci isolated in Greek hospitals. Diagn Microbiol Infect Dis 42(4):279–282

    Article  PubMed  CAS  Google Scholar 

  5. Chatzigeorgiou KS, Ikonomopoulou C, Kalogeropoulou S, Siafakas N, Giannopoulos G, Antoniadou A et al (2010) Two successfully treated cases of Staphylococcus lugdunensis endocarditis. Diagn Microbiol Infect Dis 68:445–448

    Article  PubMed  Google Scholar 

  6. Eswar N, Eramian D, Webb B, Shen MY, Sali A (2008) Protein structure modeling with MODELLER. Methods Mol Biol 426:145–159

    Article  PubMed  CAS  Google Scholar 

  7. Lovering AL, De Castro L, Strynadka NC (2008) Identification of dynamic structural motifs involved in peptidoglycan glycosyltransfer. J Mol Biol 383:167–177

    Article  PubMed  CAS  Google Scholar 

  8. Kotsakis SD, Miriagou V, Tzelepi E, Tzouvelekis LS (2010) Comparative biochemical and computational study of the role of naturally occurring mutations at Ambler positions 104 and 170 in GES β-lactamases. Antimicrob Agents Chemother 54:4864–4871

    Article  PubMed  CAS  Google Scholar 

  9. Shen MY, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci 15:2507–2524

    Article  PubMed  CAS  Google Scholar 

  10. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  11. van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  Google Scholar 

  12. Sorin EJ, Pande VS (2005) Exploring the helix–coil transition via all-atom equilibrium ensemble simulations. Biophys J 88:2472–2493

    Article  PubMed  CAS  Google Scholar 

  13. Hackbarth CJ, Kocagoz T, Kocagoz S, Chambers HF (1995) Point mutations in Staphylococcus aureus PBP 2 gene affect penicillin-binding kinetics and are associated with resistance. Antimicrob Agents Chemother 39:103–106

    PubMed  CAS  Google Scholar 

  14. Petinaki E, Dimitracopoulos G, Spiliopoulou I (2001) Decreased affinity of PBP3 to methicillin in a clinical isolate of Staphylococcus epidermidis with borderline resistance to methicillin and free of the mecA gene. Microb Drug Resist 7(3):297–300

    Article  PubMed  CAS  Google Scholar 

  15. Petinaki E, Arvaniti A, Bartzavali C, Dimitracopoulos G, Spiliopoulou I (2002) Presence of mec genes and overproduction of beta-lactamase in the expression of low-level methicillin resistance among staphylococci. Chemotherapy 48(4):174–181

    Article  PubMed  CAS  Google Scholar 

  16. Fuda C, Suvorov M, Vakulenko SB, Mobashery S (2004) The basis for resistance to beta-lactam antibiotics by penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. J Biol Chem 279:40802–40806

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Medical School of the University of Thessalia (grant no. 3917).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Tzouvelekis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotsakis, S.D., Tzouvelekis, L.S., Zerva, L. et al. Staphylococcus lugdunensis strain with a modified PBP1A/1B expressing resistance to β-lactams. Eur J Clin Microbiol Infect Dis 31, 169–172 (2012). https://doi.org/10.1007/s10096-011-1289-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-011-1289-8

Keywords

Navigation