Skip to main content
Log in

Bowel colonization with resistant gram-negative bacilli after antimicrobial therapy of intra-abdominal infections: observations from two randomized comparative clinical trials of ertapenem therapy

  • Article
  • Published:
European Journal of Clinical Microbiology and Infectious Diseases Aims and scope Submit manuscript

Abstract

The selection of resistant gram-negative bacilli by broad-spectrum antibiotic use is a major issue in infection control. The aim of this comparative study was to assess the impact of different antimicrobial regimens commonly used to treat intra-abdominal infections on the susceptibility patterns of gram-negative bowel flora after completion of therapy. In two international randomized open-label trials with laboratory blinding, adults with complicated intra-abdominal infection requiring surgery received piperacillin-tazobactam (OASIS 1) or ceftriaxone/metronidazole (OASIS II) versus ertapenem for 4–14 days. Rectal swabs were obtained at baseline, end of therapy, and 2 weeks post-therapy. Escherichia coli and Klebsiella spp. were tested for production of extended-spectrum β-lactamase (ESBL). Enterobacteriaceae resistant to the agent used were recovered from 19 of 156 (12.2%) piperacillin-tazobactam recipients at the end of therapy compared to 1 (0.6%) patient at baseline (p<0.001) in OASIS I, and from 33 of 193 (17.1%) ceftriaxone/metronidazole recipients at the end of therapy compared to 5 (2.6%) patients at baseline (p<0.001) in OASIS II. Ertapenem-resistant Enterobacteriaceae were recovered from 1 of 155 and 1 of 196 ertapenem recipients at the end of therapy versus 0 and 1 ertapenem recipients at baseline in OASIS I and II, respectively. Resistant Enterobacteriaceae emerged significantly less often during treatment with ertapenem than with the comparator in both OASIS I (p<0.001) and OASIS II (p<0.001). The prevalence of ESBL-producers increased significantly during therapy in OASIS II among 193 ceftriaxone/metronidazole recipients (from 4 [2.1%] to 18 [9.3%]) (p<0.001), whereas no ertapenem recipient was colonized with an ESBL-producer at the end of therapy in either study. Selection for imipenem-resistant Pseudomonas aeruginosa was uncommon in all treatment groups. In these studies, the frequency of bowel colonization with resistant Enterobacteriaceae substantially increased in patients treated with either piperacillin-tazobactam or ceftriaxone/metronidazole, but not in patients treated with ertapenem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lautenbach E, Strom BL, Bilker WB et al. (2001) Epidemiological investigation of fluoroquinolone resistance in infections due to extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Clin Infect Dis 33:1288–1294

    Article  CAS  PubMed  Google Scholar 

  2. Pitout JD, Sanders CC, Sanders WE Jr (1997) Antimicrobial resistance with focus on beta-lactam resistance in gram-negative bacilli. Am J Med 103:51–59

    Google Scholar 

  3. Safdar N, Maki DG (2002) The commonality of risk factors for nosocomial colonization and infection with antimicrobial-resistant Staphylococcus aureus, enterococcus, gram-negative bacilli, Clostridium difficile, and Candida. Ann Intern Med 136:834–844

    PubMed  Google Scholar 

  4. Bodey GP, Fainstein V, Garcia I et al. (1983) Effect of broad-spectrum cephalosporins on the microbial flora of recipients. J Infect Dis 148:892–897

    CAS  PubMed  Google Scholar 

  5. Paterson DL (2004) “Collateral damage” from cephalosporin or quinolone antibiotic therapy. Clin Infect Dis 38[Suppl 4]:341–345

    Article  Google Scholar 

  6. Donskey CJ, Chowdhry TK, Hecker MT et al. (2000) Effect of antibiotic therapy on the density of vancomycin-resistant enterococci in the stool of colonized patients. New Engl J Med 343:1925–1932

    Google Scholar 

  7. Hoyen CK, Pultz NJ, Paterson DL et al. (2003) Effect of parenteral antibiotic administration on establishment of intestinal colonization in mice by Klebsiella pneumoniae strains producing extended-spectrum beta-lactamases. Antimicrob Agents Chemother 47:3610–3612

    Article  CAS  PubMed  Google Scholar 

  8. Donskey CJ (2004) The role of the intestinal tract as a reservoir and source for transmission of nosocomial pathogens. Clin Infect Dis 39:219–226

    Article  PubMed  Google Scholar 

  9. Flynn DM, Weinstein RA, Nathan C et al. (1987) Patients’ endogenous flora as the source of “nosocomial” Enterobacter in cardiac surgery. J Infect Dis 156:363–368

    CAS  PubMed  Google Scholar 

  10. Shah PM, Isaacs RD (2003) Ertapenem, the first of a new group of carbapenems. J Antimicrob Chemother 52:538–542

    Article  CAS  PubMed  Google Scholar 

  11. Solomkin JS, Yellin AE, Rotstein OD et al. (2003) Ertapenem versus piperacillin/tazobactam in the treatment of complicated intraabdominal infections: results of a double-blind, randomized comparative phase III trial. Ann Surgery 237:235–245

    Article  Google Scholar 

  12. Yellin AE, Hassett JM, Fernandez A et al. (2002) Ertapenem monotherapy versus combination therapy with ceftriaxone plus metronidazole for treatment of complicated intra-abdominal infections in adults. Int J Antimicrob Agents 20:165–173

    Article  CAS  PubMed  Google Scholar 

  13. National Committee for Clinical Laboratory Standards (1999) Performance standards for antimicrobial susceptibility testing. Approved standard M27-A. Ninth informational supplement. NCCLS, Wayne, PA

    Google Scholar 

  14. Piroth L, Aube H, Doise JM et al. (1998) Spread of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae: are beta-lactamase inhibitors of therapeutic value? Clin Infect Dis 27:76–80

    CAS  PubMed  Google Scholar 

  15. Beaber JW, Hochhut B, Waldor MK (2004) SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 427:72–74

    Article  CAS  PubMed  Google Scholar 

  16. Berkowitz FE, Metchock B (1995) Third-generation cephalosporin-resistant gram-negative bacilli in the feces of hospitalized children. Pediatr Infect Dis J 14:97–100

    CAS  PubMed  Google Scholar 

  17. Cavallaro V, Catania V, Bonaccorso R et al. (1992) Effect of a broad-spectrum cephalosporin on the oral and intestinal microflora in patients undergoing colorectal surgery. J Chemother 4:82–87

    CAS  PubMed  Google Scholar 

  18. Guggenbichler JP, Allerberger FJ, Dierich M (1986) Influence of cephalosporins III generation with varying biliary excretion on fecal flora and emergence of resistant bacteria during and after cessation of therapy. Padiatr Padol 21:335–342

    CAS  PubMed  Google Scholar 

  19. Bhalla A, Pultz NJ, Ray AJ et al. (2003) Antianaerobic antibiotic therapy promotes overgrowth of antibiotic-resistant, gram-negative bacilli and vancomycin-resistant enterococci in the stool of colonized patients. Infect Control Hosp Epidemiol 24:644–649

    PubMed  Google Scholar 

  20. Mazuski JE, Sawyer RG, Nathens AB et al. (2002) The Surgical Infection Society guidelines on antimicrobial therapy for intra-abdominal infections: an executive summary. Surg Infect (Larchmt) 3:161–173

    Article  Google Scholar 

  21. Solomkin JS, Mazuski JE, Baron EJ et al. (2003) Guidelines for the selection of anti-infective agents for complicated intra-abdominal infections. Clin Infect Dis 37:997–1005

    Article  PubMed  Google Scholar 

  22. Motohiro T, Tanaka K, Koga T et al. (1985) Influence of ceftriaxone on bacterial flora in human feces. Jpn J Antibiot 38:2770–2796

    CAS  PubMed  Google Scholar 

  23. Paterson DL, Ko WC, Von Gottberg A et al. (2001) Outcome of cephalosporin treatment for serious infections due to apparently susceptible organisms producing extended-spectrum beta-lactamases: implications for the clinical microbiology laboratory. J Clin Microbiol 39:2206–2212

    Article  CAS  PubMed  Google Scholar 

  24. Kollef MH, Sherman G, Ward S et al. (1999) Inadequate antimicrobial treatment of infections: a risk factor for hospital mortality among critically ill patients. Chest 115:462–474

    Article  CAS  PubMed  Google Scholar 

  25. Cosgrove SE, Kaye KS, Eliopoulous GM et al. (2002) Health and economic outcomes of the emergence of third-generation cephalosporin resistance in Enterobacter species. Arch Intern Med 162:185–190

    Article  PubMed  Google Scholar 

  26. Paterson DL, Ko WC, Von Gottberg A et al. (2004) International prospective study of Klebsiella pneumoniae bacteremia: implications of extended-spectrum beta-lactamase production in nosocomial infections. Ann Intern Med 140:26–32

    PubMed  Google Scholar 

  27. Trouillet JL, Vuagnat A, Combes A et al. (2002) Pseudomonas aeruginosa ventilator-associated pneumonia: comparison of episodes due to piperacillin-resistant versus piperacillin-susceptible organisms. Clin Infect Dis 34:1047–1054

    Article  CAS  PubMed  Google Scholar 

  28. Martin GS, Mannino DM, Eaton S et al. (2003) The epidemiology of sepsis in the United States from 1979 through 2000. New Engl J Med 348:1546–1554

    Google Scholar 

  29. Neuhauser MM, Weinstein RA, Rydman R et al. (2003) Antibiotic resistance among gram-negative bacilli in U.S. intensive care units: implications for fluoroquinolone use. JAMA 289:885–888

    Article  CAS  PubMed  Google Scholar 

  30. Rahal JJ, Urban C, Horn D et al. (1998) Class restriction of cephalosporin use to control total cephalosporin resistance in nosocomial Klebsiella. JAMA 280:1233–1237

    Article  CAS  PubMed  Google Scholar 

  31. Fridkin SK, Hill HA, Volkova NV et al. (2002) Temporal changes in prevalence of antimicrobial resistance in 23 U.S. hospitals. Emerg Infect Dis 8:697–701

    PubMed  Google Scholar 

  32. Murray BE (2000) Vancomycin-resistant enterococcal infections. New Engl J Med 342:710–721

    Google Scholar 

  33. Livermore DM (2002) Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis 34:634–640

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest:

No information supplied

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. DiNubile.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DiNubile, M.J., Friedland, I., Chan, C.Y. et al. Bowel colonization with resistant gram-negative bacilli after antimicrobial therapy of intra-abdominal infections: observations from two randomized comparative clinical trials of ertapenem therapy. Eur J Clin Microbiol Infect Dis 24, 443–449 (2005). https://doi.org/10.1007/s10096-005-1356-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-005-1356-0

Keywords

Navigation