Skip to main content
Log in

Discontinuous Galerkin methods for Stokes equations under power law slip boundary condition: a priori analysis

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

In this work, three discontinuous Galerkin (DG) methods are formulated and analysed to solve Stokes equations with power law slip boundary condition. Numerical examples exhibited confirm the theoretical findings, moreover we also test the methods on the lid Driven cavity and compare the three DG methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable

References

  1. Arnold, D.N.: An interior penalty finite element method with discontinuous elements. Siam J. Numer. Anal. 19(4), 642–760 (1982)

    MathSciNet  Google Scholar 

  2. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analyis of discontious Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)

    Google Scholar 

  3. Baranger, J., Najib, K.: Analyse numerique des ecoulements quasi-Newtoniens dont la viscosite obeit a la loi puissance ou la loi de carreau. Numer. Math. 58, 35–49 (1990)

    MathSciNet  Google Scholar 

  4. Bodart, O., Chorfi, A., Koko, J.: A fictitious domain decomposition method for a nonlinear bonded structure. Math. Comput. Simul. 189(7), 114–125 (2021)

    MathSciNet  Google Scholar 

  5. Boffi, D., Brezzi, B., Fortin, M.: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics, Springer, Berlin (2013)

    Google Scholar 

  6. Bresch, D., Koko, J.: An optimization-based domain decomposition method for nonlinear wall laws in coupled systems. Math. Models Methods Appl. Sci. 14(7), 1085–1101 (2004)

    MathSciNet  Google Scholar 

  7. Brenner, S.C.: Korn’s inequalities for piecewise \(H^1\) vector fields. Math. Comput. 73, 1067–1087 (2004)

    ADS  Google Scholar 

  8. Brezis, H.: Functional Analysis, Sobolev Spaces and partial differential equations. Springer, Berlin (2010)

    Google Scholar 

  9. Busse, A., Sandham, N.D.: Influence of an anisotropic slip-length boundary condition on turbulent channel flow. Phys. Fluids. 24, 055111 (2012). https://doi.org/10.1063/1.4719780

    Article  ADS  CAS  Google Scholar 

  10. Charrault, E., Lee, T., Neto, C.: Interfacial slip on rough, patterned and soft surfaces: a review of experiments and simulations. Adv. Colloid Interface Sci. 210, 21–38 (2014)

    PubMed  Google Scholar 

  11. Cooper, A.J., Harris, J.H., Garrett, S., Jözkan, M., Thomas, P.J.: The effect of anisotropic and isotropic roughness on the convective stability of the rotating disk boundary layer. Phys. Fluids. 27, 014107 (2015). https://doi.org/10.1063/1.4906091

    Article  ADS  CAS  Google Scholar 

  12. Crouzeix, M., Raviart, P.A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO., Ser. Rouge. 33–75 (1973)

  13. Crouzeix, M., Falk, R.S.: Non conforming finite elements for the Stokes problem. Math. Comput. 52, 437–456 (1989)

    Google Scholar 

  14. Dawson, C., Sun, S., Wheeler, M.F.: Compatible algorithms for coupled flow and transport. Comput. Methods Appl. Mech. Eng. 193, 2565–2580 (2004)

    ADS  MathSciNet  Google Scholar 

  15. Dione, I., Tibirna, C., Urquiza, J.M.: Stokes equations with penalized slip boundary conditions. Int. J. Comput. Fluid Dyn. 27, 283–296 (2013)

    MathSciNet  Google Scholar 

  16. Dione, I., Urquiza, J.M.: Penalty finite element approximation of Stokes equations with slip boundary conditions. Numer. Math. 129, 587–610 (2015)

    MathSciNet  Google Scholar 

  17. Djoko, J.K., Koko, J., Mbehou, M., Sayah, T.: Stokes and Navier–Stokes equations under power law slip boundary condition: numerical analysis. Comput. Math. Appl. 128, 198–213 (2022)

    MathSciNet  Google Scholar 

  18. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Property of Functions. CRC Press, Boca Raton (1992)

    Google Scholar 

  19. Fortin, M., Souli, M.: A non-conforming piecewise quadratic finite element on triangles. Int. J. Numer. Methods Eng. 19, 505–520 (1983)

    Google Scholar 

  20. Fouchet-Incaux, J.: Artificial boundaries and formulations for the incompressible Navier–Stokes equations: applications to air and blood flows. SeMA J. 64, 1–40 (2014)

    MathSciNet  Google Scholar 

  21. Geymonat, G., Krasucki, F., Marini, D., Vidrascu, M.: A domain decomposition method for bonded structures. Math. Models Methods Appl. Sci. 8(8), 1387–1402 (1998)

    MathSciNet  Google Scholar 

  22. Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer, Berlin (1986)

    Google Scholar 

  23. Girault, V., Riviere, B., Wheeler, M.F.: A discontinuous Galerkin method with non overlapping domain decomposition for the Stokes and Navier–Stokes problems. Math. Comput. 74, 53–84 (2004)

    ADS  Google Scholar 

  24. Girault, V., Wheeler, M.F.: Numerical discretization of a Darcy–Forchheimer model. Numer. Math. 110, 161–198 (2008)

    MathSciNet  Google Scholar 

  25. Glowinski, R.: Finite element methods for incompressible viscous flow. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. IX, p. 176. North Holland, Amsterdam (2003)

    Google Scholar 

  26. Glowinski, R., Morrocco, A.: Sur l approximation par elements finis d ordre un et la resolution par penalisation-dualite d une classe de problemes de Dirirchlet nonlineaires. Rairo., serie rouge- Analyse numerique, 9, 41–76 (1975)

  27. Glowinski, R., Guidoboni, G., Pan, T.W.: Wall-driven incompressible viscous flow in a two-dimensional semi-circular cavity. J. Comput. Phys. 216, 76–91 (2006)

    ADS  MathSciNet  Google Scholar 

  28. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20, 251–266 (2012)

    MathSciNet  Google Scholar 

  29. Jao, Hsiang-Chin., Chang, Kuo-Ming., Chu, Li-Ming., Li, Wang-Long.: A lubrication theory for anisotropic slips and flow rheology. Tribol. Trans. 59(2), 252–266 (2016)

    CAS  Google Scholar 

  30. Kaya, S., Riviere, B.: A discontinuous subgrid eddy viscosity method for the time dependent Navier–Stokes equations. SIAM J. Numer. Anal. 43, 1572–1595 (2005)

    MathSciNet  Google Scholar 

  31. Koko, J.: An optimization based domain decomposition method for a bonded structure. Math. Models Methods Appl. Sci. 12(6), 857–870 (2002)

    MathSciNet  Google Scholar 

  32. Koko, J.: Convergence analysis of optimization-based domain decomposition methods for a bonded structure. Appl. Numer. Math. 58, 69–87 (2008)

    MathSciNet  Google Scholar 

  33. Koko, J.: Lagrangian multiplier based domain decomposition methods for a nonlinear sedimentary basin problem. Comput. Geosci. 11, 307–317 (2007)

    MathSciNet  Google Scholar 

  34. Koko, J.: Uzawa conjugate gradient domain decomposition methods for coupled Stokes flows. J. Sci. Comput. 26(2), 195–216 (2006)

    MathSciNet  Google Scholar 

  35. Jingang, Lu., Jang, Hye Kyeong, Lee, Sang Bok, Hwang, Wook Ryol: Characterization on the anisotropic slip for flows over unidirectional fibrous porous media for advanced composites manufacturing. Compos. A Appl. Sci. Manuf. 100, 9–19 (2017)

    Google Scholar 

  36. Le Roux, C.: Flows of incompressible viscous liquids with anisotropic wall slip. J. Math. Anal. Appl. 465, 723–730 (2018)

    MathSciNet  Google Scholar 

  37. Le Roux, C.: On the Navier–Stokes equations with anisotrpic wall slip conditions. Appl. Math. (2022). https://doi.org/10.21136/AM.2021.0079-21

  38. Lions, J.L.: Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod, Paris (1969)

    Google Scholar 

  39. Alam Khan, Najeeb, Sohail, Ayesha, Sultan, Faqiha: Effect of anisotropic slip and magnetic field on the flow and heat transfer of Eyring Powell fluid over an inifinite rotating disk. Int. J. Fluid Mech. Res. 44(3), 257–273 (2017)

    Google Scholar 

  40. Riviere, B., Wheeler, M.F., Girault, V.: Improved energy estimates for interior penalty constrained and discontinuous Galerkin method for elliptic problems. Part 1. Comput. Geosci. 3(3–4), 337–360 (1999)

  41. Sandri, D.N.: Sur l approximation des ecoulements numeriques quasi-Newtoniens dont la viscosite obeit a la loi de puissance ou de Carreau. M2AN 27, 131–155 (1993)

    MathSciNet  Google Scholar 

  42. Raviart, P.A., Thomas, J.M.: A mixed finite element method for second order elliptic problems. In: Mathematical Aspects of Finite Element Methods. Lecture Notes in Mathematics, vol. 606. Springer, Berlin (1975)

  43. Schotzau, D., Schwab, C., Toselli, A.: Mixed HP-DGFEM for incompressible flows. SIAM J. Numer. Anal. 40, 2171–2194 (2002)

    MathSciNet  Google Scholar 

  44. Scott, L.R., Zhang, S.: Finite element interpolation of non-smooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)

    ADS  Google Scholar 

  45. Verfurth, R.: Finite element approximation of incompressible Navier–Stokes equations with slip boundary condition II. Numer. Math. 50, 697–721 (1987)

    MathSciNet  Google Scholar 

  46. Verfurth, R.: Finite element approximation of incompressible Navier–Stokes equations with slip boundary condition II. Numer. Math. 59, 615–636 (1991)

    MathSciNet  Google Scholar 

  47. Zhou, G., Oikawav, I., Kashiwabara, T.: The Crouzeix–Raviart element for the Stokes equations with the slip boundary condition on a curved boundary. J. Comput. Appl. Math. 383, 113–123 (2020)

    MathSciNet  Google Scholar 

  48. Zhou, G., Oikawav, I., Kashiwabara, T.: Penalty method with Crouzeix–Raviart approximation for the Stokes equations under slip boundary condition. ESAIM: M2AN 53(3), 869–891 (2019)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the referee for his/her valuable remarks and comments.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djoko Kamdem Jules.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jules, D.K., Hagos, G., Jonas, K. et al. Discontinuous Galerkin methods for Stokes equations under power law slip boundary condition: a priori analysis. Calcolo 61, 13 (2024). https://doi.org/10.1007/s10092-023-00563-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-023-00563-z

Keywords

Mathematics Subject Classification

Navigation