Skip to main content
Log in

Frequency-explicit approximability estimates for time-harmonic Maxwell’s equations

  • Original Research
  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

We consider time-harmonic Maxwell’s equations set in a heterogeneous medium with perfectly conducting boundary conditions. Given a divergence-free right-hand side lying in \(L^2\), we provide a frequency-explicit approximability estimate measuring the difference between the corresponding solution and its best approximation by high-order Nédélec finite elements. Such an approximability estimate is crucial in both the a priori and a posteriori error analysis of finite element discretizations of Maxwell’s equations, but the derivation is not trivial. Indeed, it is hard to take advantage of high-order polynomials given that the right-hand side only exhibits \(L^2\) regularity. We proceed in line with previously obtained results for the simpler setting of the scalar Helmholtz equation and propose a regularity splitting of the solution. In turn, this splitting yields sharp approximability estimates generalizing known results for the scalar Helmholtz equation and showing the interest of high-order methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The authors believe it is of interest to explicitly mention \(c_s\) proofs, since at least in principle, the regularity splitting results may apply in cases where \(c_s\) is not obtain via Theorem 1.

References

  1. Adams, R., Fournier, J.: Sobolev Spaces. Academic Press, New York (2003)

    MATH  Google Scholar 

  2. Assous, F., Ciarlet, P., Jr., Labrunie, S.: Mathematical Foundations of Computational Electromagnetism, Applied Mathematical Sciences, vol. 198. Springer, Cham (2018)

    MATH  Google Scholar 

  3. Bériot, H., Prinn, A., Gabard, G.: Efficient implementation of high-order finite elements for Helmholtz problems. Int. J. Numer. Methods Eng. 106, 213–240 (2016)

    Article  MathSciNet  Google Scholar 

  4. Chaumont-Frelet, T.: Mixed finite element discretization of acoustic Helmholtz problems with high wavenumbers. Calcolo 56, 1–27 (2019)

    Article  MathSciNet  Google Scholar 

  5. Chaumont-Frelet, T., Ern, A., Vohralík, M.: On the derivation of guaranteed and \(p\)-robust a posteriori error estimates for the Helmholtz equation. Numer. Math. 148, 525–573 (2021)

    Article  MathSciNet  Google Scholar 

  6. Chaumont-Frelet, T., Nicaise, S.: Wavenumber explicit convergence analysis for finite element discretizations of general wave propagation problems. IMA J. Numer. Anal. 40, 1503–1543 (2020)

    Article  MathSciNet  Google Scholar 

  7. Chaumont-Frelet, T., Nicaise, S., Pardo, D.: Finite element approximation of electromagnetic fields using nonfitting meshes for Geophysics. SIAM J. Numer. Anal. 56, 2288–2321 (2018)

    Article  MathSciNet  Google Scholar 

  8. Dörfler, W., Sauter, S.: A posteriori error estimation for highly indefinite Helmholtz problems. Comput. Methods Appl. Math. 13, 333–347 (2013)

    Article  MathSciNet  Google Scholar 

  9. Ern, A., Guermond, J.-L.: Semiclassical Analysis, Graduate Studies in Mathematics, vol. 138. American Mathematical Society (2012)

  10. Ern, A., Guermond, J.-L.: Analysis of the edge finite element approximation of the Maxwell equations with low regularity solutions. Comput. Math. Appl. 75, 918–932 (2018)

    Article  MathSciNet  Google Scholar 

  11. Ern,A., Guermond, J.-L.: Finite Elements I. Approximation and Interpolation, Texts in Applied Mathematics, vol. 72. Springer Nature Switzerland (2021)

  12. Fernandes, P., Gilardi, G.: Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Methods Appl. Sci. 47, 2872–2896 (1997)

    MATH  Google Scholar 

  13. Gallistl, D., Olkhovskiy, V.: Computational lower bounds for the Maxwell eigenvalues (2021). arXiv:2110.02605

  14. Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Springer (1986)

  15. Ihlenburg, F., Babuška, I.: Finite element solution of the Helmholtz equation with high wave number. Part II: the \(h\)-\(p\)-version of the FEM. SIAM J. Numer. Anal. 34, 315–358 (1997)

    Article  MathSciNet  Google Scholar 

  16. Lafontaine, D., Spence, E.A., Wunsch, J.: Wavenumber-explicit convergence of the \(hp\)-FEM for the full-space heterogeneous Helmholtz equation with smooth coefficients (2020). arXiv:2010.00585

  17. Melenk, J.M., Sauter, S.: Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation. SIAM J. Numer. Anal. 49, 1210–1243 (2011)

    Article  MathSciNet  Google Scholar 

  18. Melenk, J.M., Sauter, S.A.: Wavenumber-explicit \(hp\)-FEM analysis for Maxwell’s equations with transparent boundary conditions. Found. Comput. Math. 21, 125–241 (2021)

    Article  MathSciNet  Google Scholar 

  19. Sauter, S., Zech, J.: A posteriori error estimation of \(hp\)-dG finite element methods for highly indefinite Helmholtz problems. SIAM J. Numer. Anal. 53, 2414–2440 (2015)

    Article  MathSciNet  Google Scholar 

  20. Schatz, A.H.: An observation concerning Ritz–Galerkin methods with indefinite bilinear forms. Math. Comput. 28, 959–962 (1974)

    Article  MathSciNet  Google Scholar 

  21. Taus, M., Zepeda-Núñez, L., Hewett, R., Demanet, L.: Pollution-free and fast hybridizable discontinuous Galerkin solvers for the high-frequency Helmholtz equation. In: Proc, SEG annual meeting (Houston) (2017)

  22. Weber, C.: A local compactness theorem for Maxwell’s equations. Math. Methods Appl. Sci. 2, 12–25 (1980)

    Article  MathSciNet  Google Scholar 

  23. Weber, C.: Regularity theorems for Maxwell’s equations. Math. Methods Appl. Sci. 3, 523–536 (1981)

    Article  MathSciNet  Google Scholar 

  24. Zhong, L., Shu, S., Wittum, G., Xu, J.: Optimal error estimates for Nédélec edge elements for time-harmonic Maxwell’s equations. J. Comput. Math. 27, 563–572 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Théophile Chaumont-Frelet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaumont-Frelet, T., Vega, P. Frequency-explicit approximability estimates for time-harmonic Maxwell’s equations. Calcolo 59, 22 (2022). https://doi.org/10.1007/s10092-022-00464-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-022-00464-7

Keywords

Mathematics Subject Classification

Navigation