Skip to main content
Log in

Virtual enriching operators

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

We construct bounded linear operators that map \(H^1\) conforming Lagrange finite element spaces to \(H^2\) conforming virtual element spaces in two and three dimensions. These operators are useful for the analysis of nonstandard finite element methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adams, R., Fournier, J.: Sobolev Spaces, 2nd edn. Academic Press, Amsterdam (2003)

    MATH  Google Scholar 

  2. Beirão da Veiga, L., Dassi, F., Russo, A.: A \(C^1\) virtual element method on polyhedral meshes. arXiv:1808.01105v2 [math.NA] (to appear in Comput. Math. Appl.)

  3. Bramble, J., Hilbert, S.: Estimation of linear functionals on Sobolev spaces with applications to Fourier transforms and spline interpolation. SIAM J. Numer. Anal. 7, 113–124 (1970)

    Article  MathSciNet  Google Scholar 

  4. Brenner, S.: Two-level additive Schwarz preconditioners for nonconforming finite element methods. Math. Comput. 65, 897–921 (1996)

    Article  MathSciNet  Google Scholar 

  5. Brenner, S.: Convergence of nonconforming multigrid methods without full elliptic regularity. Math. Comput. 68, 25–53 (1999)

    Article  MathSciNet  Google Scholar 

  6. Brenner, S.: \(C^0\) interior penalty methods. In: Blowey, J., Jensen, M. (eds.) Frontiers in Numerical Analysis-Durham 2010, Lecture Notes in Computational Science and Engineering, vol. 85, pp. 79–147. Springer, Berlin (2012)

    Chapter  Google Scholar 

  7. Brenner, S., Gedicke, J., Sung, L.Y., Zhang, Y.: An a posteriori analysis of \(C^0\) interior penalty methods for the obstacle problem of clamped Kirchhoff plates. SIAM J. Numer. Anal. 55, 87–108 (2017)

    Article  MathSciNet  Google Scholar 

  8. Brenner, S., Gudi, T., Sung, L.Y.: An a posteriori error estimator for a quadratic \({C^0}\) interior penalty method for the biharmonic problem. IMA J. Numer. Anal. 30, 777–798 (2010)

    Article  MathSciNet  Google Scholar 

  9. Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008)

    Book  Google Scholar 

  10. Brenner, S., Sung, L.Y.: A new convergence analysis of finite element methods for elliptic distributed optimal control problems with pointwise state constraints. SIAM J. Control Optim. 55, 2289–2304 (2017)

    Article  MathSciNet  Google Scholar 

  11. Brenner, S., Wang, K.: Two-level additive Schwarz preconditioners for \(C^0\) interior penalty methods. Numer. Math. 102, 231–255 (2005)

    Article  MathSciNet  Google Scholar 

  12. Brezzi, F., Marini, L.: Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253, 455–462 (2013)

    Article  MathSciNet  Google Scholar 

  13. Chinosi, C., Marini, L.: Virtual element method for fourth order problems: \(L^2\)-estimates. Comput. Math. Appl. 72, 1959–1967 (2016)

    Article  MathSciNet  Google Scholar 

  14. Ciarlet, P.: Sur l’élément de Clough et Tocher. RAIRO Anal. Numér. 8, 19–27 (1974)

    MATH  Google Scholar 

  15. Ciarlet, P.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  16. Clough, R., Tocher, J.: Finite element stiffness matrices for analysis of plate bending. In: Proceedings of Conference on Matrix Methods in Structural Mechanics, pp. 515–545. Wright-Patterson Air Force Base (1965)

  17. Douglas Jr., J., Dupont, T., Percell, P., Scott, R.: A family of \(C^1\) finite elements with optimal approximation properties for various Galerkin methods for 2nd and 4th order problems. R.A.I.R.O. Modél. Math. Anal. Numér. 13, 227–255 (1979)

    MATH  Google Scholar 

  18. Dupont, T., Scott, R.: Polynomial approximation of functions in Sobolev spaces. Math. Comput. 34, 441–463 (1980)

    Article  MathSciNet  Google Scholar 

  19. Georgoulis, E., Houston, P., Virtanen, J.: An a posteriori error indicator for discontinuous Galerkin approximations of fourth-order elliptic problems. IMA J. Numer. Anal. 31, 281–298 (2011)

    Article  MathSciNet  Google Scholar 

  20. Grisvard, P.: Elliptic Problems in Nonsmooth Domains, Classics in Applied Mathematics, vol. 69. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2011)

    Book  Google Scholar 

  21. Lax, P.: Functional Analysis. Wiley-Interscience, New York (2002)

    MATH  Google Scholar 

  22. Nečas, J.: Direct Methods in the Theory of Elliptic Equations. Springer, Heidelberg (2012)

    Book  Google Scholar 

  23. Neilan, M., Wu, M.: Discrete Miranda–Talenti estimates and applications to linear and nonlinear PDEs. J. Comput. Appl. Math. 356, 358–376 (2019)

    Article  MathSciNet  Google Scholar 

  24. Peano, A.: Hierarchies of conforming finite elements for plane elasticity and plate bending. Comput. Math. Appl. 2, 211–224 (1976)

    Article  Google Scholar 

  25. Percell, P.: On cubic and quartic Clough–Tocher finite elements. SIAM J. Numer. Anal. 13, 100–103 (1976)

    Article  MathSciNet  Google Scholar 

  26. Wloka, J.: Partial Differential Equations. Cambridge University Press, Cambridge (1987)

    Book  Google Scholar 

  27. Worsey, A., Farin, G.: An \(n\)-dimensional Clough–Tocher interpolant. Constr. Approx. 3, 99–110 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne C. Brenner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by the National Science Foundation under Grant Nos. DMS-16-20273 and DMS-19-13035.

A Inverse trace theorems for \(\mathbb {R}_+^2\) and \(\mathbb {R}_+^3\)

A Inverse trace theorems for \(\mathbb {R}_+^2\) and \(\mathbb {R}_+^3\)

We consider inverse trace theorems for \(\mathbb {R}_+^2\) and \(\mathbb {R}_+^3\) with data on the boundaries of these domains (cf. Fig. 5). We will rely on the results in Lemmas A.1 and A.2 that follow from the construction of inverse trace operators through the Fourier transform [22, 26] and the Paley–Wiener theorem [21].

Fig. 5
figure 5

Boundary data for \(\mathbb {R}_+^2\) and \(\mathbb {R}_+^3\)

Lemma A.1

There exists a bounded linear operator

$$\begin{aligned} L_1:H^{2}(\mathbb {R})\times H^{1}(\mathbb {R})\longrightarrow H^{\frac{5}{2}}(\mathbb {R}^2) \end{aligned}$$

such that (i) \([L_1(\phi ,\psi )](t,0)=\phi (t)\), (ii) \([\partial L_1(\phi ,\psi )/\partial x_2](t,0)=\psi (t)\), and (iii) \(L_1(\phi ,\psi )(x_1,x_2)\) vanishes on the half plane \(x_1<0\) if \(\phi (t)\) and \(\psi (t)\) vanish on the half line \(t<0\).

Lemma A.2

There exists a bounded linear operator

$$\begin{aligned} L_2:H^{2}(\mathbb {R}^2)\times H^{1}(\mathbb {R}^2)\longrightarrow H^{\frac{5}{2}}(\mathbb {R}^3) \end{aligned}$$

such that (i) \([L_2(\phi ,\psi )](x_1,x_2,0)=\phi (x_1,x_2)\), (ii) \([\partial L_2(\phi ,\psi )/\partial x_3](x_1,x_2,0)=\psi (x_1,x_2)\), and (iii) \(L_2(\phi ,\psi )(x_1,x_2,x_3)\) vanishes on the half space \(x_1<0\) (resp., \(x_2<0)\) if \(\phi (x_1,x_2)\) and \(\psi (x_1,x_2)\) vanish on the half plane \(x_1<0\) (resp., \(x_2<0)\).

We begin with a two-dimensional inverse trace theorem. We note that similar results for \(H^2(\mathbb {R}_+^2)\) can be found in [20, Section 1.5.2]. Our approach is simpler (since we are considering \(H^\frac{5}{2}(\mathbb {R}_+^2)\)) and therefore its extension to three dimensions is easier.

Lemma A.3

Let \((\phi _1,\psi _1)\) and \((\phi _2,\psi _2)\) belong to \(H^{2}(\mathbb {R}_+)\times H^{1}(\mathbb {R}_+)\) such that

$$\begin{aligned} \phi _1(0)&=\phi _2(0), \end{aligned}$$
(A.1)
$$\begin{aligned} \psi _1(0)&=\phi _2'(0), \end{aligned}$$
(A.2)
$$\begin{aligned} \psi _2(0)&=\phi _1'(0). \end{aligned}$$
(A.3)

Then there exists \(\zeta \in H^\frac{5}{2}(\mathbb {R}_+^2)\) such that

$$\begin{aligned} (\zeta ,\partial \zeta /\partial x_i)=(\phi _i,\psi _i) \quad \text {if } x_i=0, \,1\le i\le 2. \end{aligned}$$
(A.4)

Proof

First we extend \(\phi _1\) and \(\psi _1\) to \(\mathbb {R}\), so that the extensions (still denoted by \(\phi _1\) and \(\psi _1\)) satisfy \(\phi _1\in H^{2}(\mathbb {R})\) and \(\psi _1\in H^{1}(\mathbb {R})\). This can be achieved by reflection (cf. [22, Theorem 2.3.9] and [1, Theorem 5.19]). Let \(L_1\) be the lifting operator in Lemma A.1 and \(\zeta _1=L_1(\phi _1,\psi _1)\in H^{\frac{5}{2}}(\mathbb {R}^2)\) so that

$$\begin{aligned} \zeta _1(0,x_2)=\phi _1(x_2)\quad \text {and}\quad (\partial \zeta _1/\partial x_1)(0,x_2)=\psi _1(x_2). \end{aligned}$$
(A.5)

Then we define \({{\tilde{\phi }}}_2(x_1)=\phi _2(x_1)-\zeta _1(x_1,0)\), \({{\tilde{\psi }}}_2(x_1)=\psi _2(x_1)-(\partial \zeta _1/\partial x_2)(x_1,0)\) for \(x_1>0\).

Note that \({{\tilde{\phi }}}_2\in H^{2}(\mathbb {R}_+)\), and

$$\begin{aligned} {{\tilde{\phi }}}_2(0)=\phi _2(0)-\zeta _1(0,0)=\phi _2(0)-\phi _1(0)=0 \end{aligned}$$

by (A.1) and (A.5), and

$$\begin{aligned} {{\tilde{\phi }}}_2'(0)=\phi _2'(0)-(\partial \zeta _1/\partial x_1)(0,0)=\phi _2'(0)-\psi _1(0)=0 \end{aligned}$$

by (A.2) and (A.5). Moreover we have \({{\tilde{\psi }}}_2\in H^{1}(\mathbb {R}_+)\), and

$$\begin{aligned} {{\tilde{\psi }}}_2(0)=\psi _2(0)-(\partial \zeta _1/\partial x_2)(0,0)=\psi _2(0)-\phi _1'(0)=0 \end{aligned}$$

by (A.3) and (A.5). Hence their trivial extensions (still denoted by \({{\tilde{\phi }}}_2\) and \({{\tilde{\psi }}}_2\)) satisfy \({{\tilde{\phi }}}_2\in H^{2}(\mathbb {R})\) and \({{\tilde{\psi }}}_2\in H^{1}(\mathbb {R})\).

Let \(\zeta _2=L_1({{\tilde{\phi }}}_2,{{\tilde{\psi }}}_2)\in H^{\frac{5}{2}}(\mathbb {R}^2)\) such that \(\zeta _2(x_1,0)={{\tilde{\psi }}}_2(x_1,0)\) and

$$\begin{aligned} (\partial \zeta _2/\partial x_2)(x_1,0)={{\tilde{\psi }}}_1(x_1). \end{aligned}$$

Then \(\zeta _2=0\) on the half plane \(x_1<0\) by Lemma A.3, which implies

$$\begin{aligned} \zeta _2(0,x_2)=(\partial \zeta _2/\partial x_1)(0,x_2)=0 \quad \forall \, x_2>0. \end{aligned}$$

We can now take \(\zeta \) to be the restriction of \(\zeta _1+\zeta _2\) to \(\mathbb {R}_+^2\). \(\square \)

Next we consider the three dimensional analog of Lemma A.3.

Lemma A.4

Let \((\phi _1,\psi _1)\), \((\phi _2,\psi _2)\) and \((\phi _3,\psi _3)\) belong to \(H^{2}(\mathbb {R}_+^2)\times H^{1}(\mathbb {R}_+^2)\) such that the following conditions are satisfied : 

$$\begin{aligned} \phi _1(0,x_3)&=\phi _2(0,x_3)\qquad \forall \,x_3>0, \end{aligned}$$
(A.6)
$$\begin{aligned} \phi _2(x_1,0)&=\phi _3(x_1,0)\qquad \forall \,x_1>0, \end{aligned}$$
(A.7)
$$\begin{aligned} \phi _3(0,x_2)&=\phi _1(x_2,0)\qquad \forall x_2>0, \end{aligned}$$
(A.8)
$$\begin{aligned} \psi _1(0,x_3)&=\frac{\partial \phi _2}{\partial x_1}(0,x_3)\qquad \forall \,x_3>0, \end{aligned}$$
(A.9)
$$\begin{aligned} \psi _1(x_2,0)&=\frac{\partial \phi _3}{\partial x_1}(0,x_2)\qquad \forall \,x_2>0, \end{aligned}$$
(A.10)
$$\begin{aligned} \psi _2(x_1,0)&=\frac{\partial \phi _3 }{\partial x_2}(x_1,0)\qquad \forall \,x_1>0, \end{aligned}$$
(A.11)
$$\begin{aligned} \psi _2(0,x_3)&=\frac{\partial \phi _1 }{\partial x_2}(0,x_3)\qquad \forall \,x_3>0, \end{aligned}$$
(A.12)
$$\begin{aligned} \psi _3(x_1,0)&=\frac{\partial \phi _2}{\partial x_3}(x_1,0)\qquad \forall \,x_1>0, \end{aligned}$$
(A.13)
$$\begin{aligned} \psi _3(0,x_2)&=\frac{\partial \phi _1}{\partial x_3}(x_2,0)\qquad \forall \,x_2>0. \end{aligned}$$
(A.14)

Then there exists \(\zeta \in H^\frac{5}{2}(\mathbb {R}_+^3)\) such that

$$\begin{aligned} (\zeta ,\partial \zeta /\partial x_i)=(\phi _i,\psi _i) \quad \hbox { if}\ \;x_i=0, \;1\le i\le 3. \end{aligned}$$
(A.15)

Proof

First we extend \(\phi _1\) and \(\psi _1\) to \(\mathbb {R}^2\) by reflection (twice) so that the extensions (still denoted by \(\phi _1\) and \(\psi _1\)) satisfy \(\phi _1\in H^2(\mathbb {R}^2)\) and \(\psi _1\in H^1(\mathbb {R}^2)\). Let \(L_2\) be the lifting operator in Lemma A.2 and \(\zeta _1=L_2(\phi _1,\psi _1)\) so that

$$\begin{aligned} \zeta _1(0,x_2,x_3)&=\phi _1(x_2,x_3), \end{aligned}$$
(A.16)
$$\begin{aligned} (\partial \zeta _1/\partial x_1)(0,x_2,x_3)&=\psi _1(x_2,x_3). \end{aligned}$$
(A.17)

Then we define, for \((x_1,x_3)\in \mathbb {R}_+^2\),

$$\begin{aligned} {{\tilde{\phi }}}_2(x_1,x_3)&=\phi _2(x_1,x_3)-\zeta _1(x_1,0,x_3), \end{aligned}$$
(A.18)
$$\begin{aligned} {{\tilde{\psi }}}_2(x_1,x_3)&=\psi _2(x_1,x_3)-(\partial \zeta _1/\partial x_2)(x_1,0,x_3). \end{aligned}$$
(A.19)

Note that \({{\tilde{\phi }}}_2\) belongs to \(H^2(\mathbb {R}_+^2)\) and

$$\begin{aligned} {{\tilde{\phi }}}_2(0,x_3)=\phi _2(0,x_3)-\zeta _1(0,0,x_3)=\phi _2(0,x_3)-\phi _1(0,x_3) =0\quad \text {for}\; x_3>0 \end{aligned}$$

by (A.6), (A.16) and (A.18), and

$$\begin{aligned} \frac{\partial {{\tilde{\phi }}}_2}{\partial x_1}(0,x_3)=\frac{\partial \phi _2}{\partial x_1}(0,x_3) -\frac{\partial \zeta _1}{\partial x_1}(0,0,x_3) = \frac{\partial \phi _2}{\partial x_1}(0,x_3)-\psi _1(0,x_3)=0 \end{aligned}$$

by (A.9), (A.17) and (A.18). Furthermore \({{\tilde{\psi }}}_2\) belongs to \(H^1(\mathbb {R}_+^2)\) and

$$\begin{aligned} {{\tilde{\psi }}}_2(0,x_3)&=\psi _2(0,x_3)- \frac{\partial \zeta _1}{\partial x_2}(0,0,x_3)\\&=\psi _2(0,x_3)- \frac{\partial \phi _1}{\partial x_2}(0,x_3)=0\quad \text {for}\; x_3>0 \end{aligned}$$

by (A.12), (A.16) and (A.19).

Hence we can extend \({{\tilde{\phi }}}_2\) and \({{\tilde{\psi }}}_2\) to \(\mathbb {R}_+\times \mathbb {R}\) by reflection across \(x_3=0\) (still denoted by \({{\tilde{\phi }}}_2\) and \({{\tilde{\psi }}}_2\)) so that \({{\tilde{\phi }}}_2\in H^2(\mathbb {R}_+\times \mathbb {R})\), \({{\tilde{\psi }}}_2\in H^2(\mathbb {R}_+\times \mathbb {R})\), \({{\tilde{\phi }}}_2(0,x_3)=(\partial {{\tilde{\phi }}}_2/\partial x_1)(0,x_3)=0\) for \(x_3\in \mathbb {R}\) and \({{\tilde{\psi }}}_2(0,x_3)=0\) for \(x_3\in \mathbb {R}\). Therefore the trivial extensions of \({{\tilde{\phi }}}_2\) and \({{\tilde{\psi }}}_2\) to \(\mathbb {R}^2\) (still denoted by \({{\tilde{\phi }}}_2\) and \({{\tilde{\psi }}}_2\)) belong to \(H^2(\mathbb {R}^2)\) and \(H^1(\mathbb {R}^2)\) respectively.

Let \(\zeta _2=L_2({{\tilde{\phi }}}_2,{{\tilde{\psi }}}_2)\). Then we have, by Lemma A.2,

$$\begin{aligned} \zeta _2(x_1,0,x_3)&={{\tilde{\phi }}}_2(x_1,x_3), \end{aligned}$$
(A.20)
$$\begin{aligned} (\partial \zeta _2/\partial x_2)(x_1,0,x_3)&={{\tilde{\psi }}}_2(x_1,x_3), \end{aligned}$$
(A.21)

and

$$\begin{aligned} \zeta _2(x_1,x_2,x_3)=0 \quad \hbox { if}\ x_1<0, \end{aligned}$$

which implies

$$\begin{aligned} \zeta _2=\partial \zeta _2/\partial x_1=0 \quad \text {if } x_1=0. \end{aligned}$$
(A.22)

We now define, for \((x_1,x_2)\in \mathbb {R}_+^2\),

$$\begin{aligned} {{\tilde{\phi }}}_3(x_1,x_2)&=\phi _3(x_1,x_2)-\zeta _1(x_1,x_2,0)-\zeta _2(x_1,x_2,0), \end{aligned}$$
(A.23)
$$\begin{aligned} {{\tilde{\psi }}}_3(x_1,x_2)&=\psi _3(x_1,x_2)-(\partial \zeta _1/\partial x_3)(x_1,x_2,0)-(\partial \zeta _2/\partial x_3)(x_1,x_2,0). \end{aligned}$$
(A.24)

Then \({{\tilde{\phi }}}_3\) (resp., \({{\tilde{\psi }}}_3\)) belongs to \(H^2(\mathbb {R}_+^2)\) (resp., \(H^1(\mathbb {R}_+^2)\)).

Moreover, it follows from (A.8), (A.16), (A.22) and (A.23) that

$$\begin{aligned} {{\tilde{\phi }}}_3(0,x_2)=\phi _3(0,x_2)-\zeta _1(0,x_2,0)= \phi _3(0,x_2)-\phi _1(x_2,0)=0 \quad \text {for}\;x_2>0, \end{aligned}$$

and (A.10), (A.17), (A.22) and (A.23) imply

$$\begin{aligned} \frac{\partial {{\tilde{\phi }}}_3}{\partial x_1}(0,x_2)&=\frac{\partial \phi _3}{\partial x_1}(0,x_2) -\frac{\partial \zeta _1}{\partial x_1}(0,x_2,0)\\&=\frac{\partial \phi _3}{\partial x_1}(0,x_2)-\psi _1(x_2,0)=0\quad \text {for}\;x_2>0. \end{aligned}$$

From (A.14), (A.16), (A.22) and (A.24) we also have

$$\begin{aligned} {{\tilde{\psi }}}_3(0,x_2)=\psi _3(0,x_2)-\frac{\partial \zeta _1}{\partial x_3}(0,x_2,0)= \psi _3(0,x_2)-\frac{\partial \phi _1}{\partial x_3}(x_2,0)\quad \text {for}\;x_2>0. \end{aligned}$$

Next we check the behavior of \({{\tilde{\phi }}}_3\) and \({{\tilde{\psi }}}_3\) at \(x_2=0\). We have

$$\begin{aligned} {{\tilde{\phi }}}_3(x_1,0)&=\phi _3(x_1,0)-\zeta _1(x_1,0,0)-\zeta _2(x_1,0,0)\\&=\phi _3(x_1,0)-\phi _2(x_1,0)=0\quad \text {for}\;x_1>0 \end{aligned}$$

by (A.7), (A.18), (A.20) and (A.23);

$$\begin{aligned} \frac{\partial {{\tilde{\phi }}}_3}{\partial x_2}(x_1,0)&=\frac{\partial \phi _3}{\partial x_2}(x_1,0) -\frac{\partial \zeta _1}{\partial x_2}(x_1,0,0)-\frac{\partial \zeta _2}{\partial x_2}(x_1,0,0)\\&=\frac{\partial \phi _3}{\partial x_2}(x_1,0)-\psi _2(x_1,0)=0\quad \text {for}\;x_1>0 \end{aligned}$$

by (A.11), (A.18), (A.21) and (A.23);

$$\begin{aligned} {{\tilde{\psi }}}_3(x_1,0)&=\psi _3(x_1,0)-\frac{\partial \zeta _1}{\partial x_3}(x_1,0,0)-\frac{\partial \zeta _2}{\partial x_3}(x_1,0,0)\\&=\psi _3(x_1,0)-\frac{\partial \phi _2}{\partial x_3}(x_1,0)=0 \quad \text {for}\;x_1>0 \end{aligned}$$

by (A.13), (A.18), (A.20) and (A.24).

The calculations above show that \({{\tilde{\phi }}}_3=\partial {{\tilde{\phi }}}_3/\partial n={{\tilde{\psi }}}_3=0\) on the boundary of \(\mathbb {R}_+^2\). Hence their trivial extensions to \(\mathbb {R}^2\) (still denoted by \({{\tilde{\phi }}}_3\) and \({{\tilde{\psi }}}_3\)) belongs to \(H^2(\mathbb {R}^2)\) and \(H^1(\mathbb {R}^2)\).

Let \(\zeta _3=L_2({{\tilde{\phi }}}_1,{{\tilde{\psi }}}_1)\). Then we have, by Lemma A.2, \(\zeta _3\in H^3(\mathbb {R}^3)\),

$$\begin{aligned} \zeta _3(x_1,x_2,0)&={{\tilde{\phi }}}_3(x_1,x_2), \end{aligned}$$
(A.25)
$$\begin{aligned} (\partial \zeta _3/\partial x_3)(x_1,x_2,0)&={{\tilde{\psi }}}_3(x_1,x_2), \end{aligned}$$
(A.26)

and

$$\begin{aligned} \zeta _3(x_1,x_2,x_3)=0 \quad \text { if } x_1<0 \text { or } x_2<0, \end{aligned}$$

which implies

$$\begin{aligned} \zeta _3=\frac{\partial \zeta _3}{\partial x_1}=0 \quad \text {if } x_1=0 \quad \text {and} \quad \zeta _3=\frac{\partial \zeta _3}{\partial x_2}=0\quad \text {if } x_2=0. \end{aligned}$$
(A.27)

We can now take \(\zeta \) to be the restriction of \(\zeta _1+\zeta _2+\zeta _3\) to \(\mathbb {R}_+^3\), and (A.15) follows from (A.16)–(A.27). \(\square \)

Finally we have a three-dimensional result that is two-dimensional in nature and which can be derived by using the arguments in the proof of either Lemma A.3 or Lemma A.4.

Lemma A.5

Let \((\phi _1,\psi _1)\) and \((\phi _2,\psi _2)\) belong to \(H^2(\mathbb {R}_+\times \mathbb {R})\times H^1(\mathbb {R}_+\times \mathbb {R})\) such that

$$\begin{aligned} \phi _1(0,x_3)&=\phi _2(0,x_3)\qquad \forall \;x_3\in \mathbb {R},\\ \psi _1(0,x_3)&=\frac{\partial \phi _2}{\partial x_1}(0,x_3)\qquad \forall \;x_3\in \mathbb {R},\\ \psi _2(0,x_3)&=\frac{\partial \phi _1}{\partial x_2}(0,x_3)\qquad \forall \;x_3\in \mathbb {R}. \end{aligned}$$

Then there exists \(\zeta \in H^\frac{5}{2}(\mathbb {R}_+^3)\) such that

$$\begin{aligned} (\zeta ,\partial \zeta /\partial x_i)=(\phi _i,\psi _i)\quad \text {if } x_i=0, 1\le i\le 2. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brenner, S.C., Sung, LY. Virtual enriching operators. Calcolo 56, 44 (2019). https://doi.org/10.1007/s10092-019-0338-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-019-0338-z

Keywords

Mathematics Subject Classification

Navigation