Skip to main content
Log in

A mixed discretization of elliptic problems on polyhedra using anisotropic hybrid meshes

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

A virtual element method is introduced for the mixed approximation of a simple model problem for the Laplace operator on a polyhedron. The method is fully analysed when the meshes are made up of triangular right prisms, pyramids and tetrahedra. The local discrete spaces coincide with the lowest order Raviart–Thomas spaces on tetrahedral and triangular right prismatic elements, and extend them to pyramidal elements. The discrete scheme is well posed and optimal interpolation error estimates are proved on meshes which allow for anisotropic elements. In particular, local interpolation error estimates for the discrete element space are optimal and anisotropic on anisotropic right prisms. Furthermore, a discretization of the model problem in the presence of edge and vertex singularities is analysed for the proposed method on a family of suitably designed graded meshes, and optimal estimates for the approximation error are obtained, extending in this way the results of Farhloul et al. (ESAIM Math Model Numer Anal 35:907–920, 2001) where cylindrical domains with edge singularities were considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Acosta, G., Apel, T., Durán, R.G., Lombardi, A.L.: Error estimates for Raviart–Thomas interpolation of any order on anisotropic tetrahedra. Math. Comput. 80, 141–163 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Apel, T.: Anisotropic Finite Elements: Local Estimates and Applications. Series Advances in Numerical Mathematics. Teubner, Stuttgart (1999)

    MATH  Google Scholar 

  3. Apel, T., Lombardi, A.L., Winkler, M.: Anisotropic mesh refinement in polyhedral domains: error estimates with data in \(L^2(\Omega )\). ESAIM Math. Model Numer. Anal. 48, 1117–1145 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Apel, T., Nicaise, S.: The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges. Math. Models Appl. Sci. 21, 519–549 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beirão Da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(1), 199–214 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beirão Da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: Mixed virtual element methods for general second order elliptic problems on polygonal meshes. ESAIM Math. Model. Numer. Anal. 50, 727–747 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beirão Da Veiga, L., Mora, D., Rivera, G., Rodriguez, R.: A virtual element method for the acoustic vibration problem. Numer. Math. 136, 725–763 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bergot, M., Cohen, G., Duruflé, M.: Higher-order finite elements for hybrid meshes using new nodal pyramidal elements. J. Sci. Comput. 42, 345–381 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Boffi, D., Brezzi, F., Demkowicz, L.F., Durán, R.G., Falk, R.S., Fortin, M.: Mixed Finite Elements, Compatibility Conditions and Applications. Lecture Notes in Mathematics, vol. 1939. Springer, Berlin (2008)

    Book  Google Scholar 

  10. Brezzi, F., Falk, R.S., Marini, L.D.: Basic principles of mixed Virtual Element Methods. ESAIM Math. Model. Numer. Anal. 48, 1227–1240 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ciarlet, P.: The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications, vol. 4. North-Holland, Amsterdam (1978)

    Book  MATH  Google Scholar 

  12. Farhloul, M., Nicaise, S., Paquet, L.: Some mixed finite element methods on anisotropic meshes. ESAIM Math. Model. Numer. Anal. 35, 907–920 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gradinaru, V., Hiptmair, R.: Whitney elements on pyramids. Electron. Trans. Numer. Anal. 8, 154–168 (1999)

    MathSciNet  MATH  Google Scholar 

  14. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Monographs and Studies in Mathematics, vol. 24. Pitman (Advanced Publishing Program), Boston (1985)

    MATH  Google Scholar 

  15. Jawtuschenko, A.B.: Métodos mixtos con mallas híbridas para problemas elípticos en dominios poliedrales. Tesis de Doctorado de la Universidad de Buenos Aires (2018). http://cms.dm.uba.ar/academico/carreras/doctorado/thesisJawtuschenko.pdf. Accessed 19 Mar 2019

  16. Nédéléc, J.C.: A new family of mixed finite elements in \({\mathbb{R}}^3\). Numer. Math. 50, 57–81 (1986)

    MathSciNet  MATH  Google Scholar 

  17. Nigam, N., Phillips, J.: High-order conforming finite elements on pyramids. IMA J. Numer. Anal. 32, 448–483 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Owen, S.J., Saigal, S.: Formation of pyramids elements for hexahedra to tetrahedra transitions. Comput. Methods Appl. Mech. Eng. 190, 4505–4518 (2001)

    Article  MathSciNet  Google Scholar 

  19. Raugel, G.: Résolution numérique par une méthode d’éléments finis du problème Dirichlet pour le laplacien dans un polygone. C. R. Acad. Sci. Paris Ser. A 286, A791–A794 (1978)

    MATH  Google Scholar 

  20. Raviart, P.A., Thomas, J.-M.: A mixed finite element method for second order elliptic problems. In: Galligani, I., Magenes, E. (eds.) Mathematical Aspects of the Finite Element Method. Lectures Notes in Mathematics, vol. 606. Springer, Berlin (1977)

    Google Scholar 

Download references

Acknowledgements

This research has been supported by CONICET-Argentina under Grant PID 14420140100027CO, by Agencia Nacional de Promoción Científica y Tecnológica under Grant PICT 2014–1771, and by Universidad de Buenos Aires under Grant UBACyT 20020120100050.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariel L. Lombardi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jawtuschenko, A.B., Lombardi, A.L. A mixed discretization of elliptic problems on polyhedra using anisotropic hybrid meshes. Calcolo 56, 10 (2019). https://doi.org/10.1007/s10092-019-0303-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-019-0303-x

Keywords

Mathematics Subject Classification

Navigation