Skip to main content
Log in

Numerical solutions of systems of first-order, two-point BVPs based on the reproducing kernel algorithm

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

The aim of the present analysis is to implement a relatively recent computational algorithm, reproducing kernel Hilbert space, for obtaining the solutions of systems of first-order, two-point boundary value problems for ordinary differential equations. The reproducing kernel Hilbert space is constructed in which the initial–final conditions of the systems are satisfied. Whilst, three smooth kernel functions are used throughout the evolution of the algorithm in order to obtain the required grid points. An efficient construction is given to obtain the numerical solutions for the systems together with an existence proof of the exact solutions based upon the reproducing kernel theory. In this approach, computational results of some numerical examples are presented to illustrate the viability, simplicity, and applicability of the algorithm developed. Finally, the utilized results show that the present algorithm and simulated annealing provide a good scheduling methodology to such systems compared with other numerical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Strang, G., Fix, G.: An Analysis of the Finite Element Method. Wellesley-Cambridge, Cambridge (2008)

    MATH  Google Scholar 

  2. Pytlak, R.: Numerical Methods for Optimal Control Problems with State Constraints. Springer, Berlin (1999)

    Book  Google Scholar 

  3. Kubicek, M., Hlavacek, V.: Numerical Solution of Nonlinear Boundary Value Problems with Applications. Dover Publications, Mineola (2008)

    MATH  Google Scholar 

  4. Keller, H.B.: Numerical Methods for Two-Point Boundary-Value Problems. Dover Publications, Mineola (1993)

    Google Scholar 

  5. Ascher, U.M., Mattheij, R.M.M., Russell, R.D.: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations (Classics in Applied Mathematics). SIAM, Philadelphia (1995)

    Book  Google Scholar 

  6. Trent, A., Venkataraman, R., Doman, D.: Trajectory generation using a modified simple shooting method. In: Aerospace Conference, Proceedings: 2004 IEEE, vol. 4, pp. 2723–2729 (2004)

  7. Holsapple, R.W., Venkataraman, R., Doman, D.: New, fast numerical method for solving two-point boundary-value problems. J. Guid. Control Dyn. 27, 301–304 (2004)

    Article  Google Scholar 

  8. Zhao, J.: Highly accurate compact mixed methods for two point boundary value problems. Appl. Math. Comput. 188, 1402–1418 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Cash, J.R., Wright, M.H.: A deferred correction method for nonlinear two-point boundary value problems: implementation and numerical evaluation. SIAM J. Sci. Stat. Comput. 12, 971–989 (1991)

    Article  MathSciNet  Google Scholar 

  10. Cash, J.R., Moore, D.R., Sumarti, N., Daele, M.V.: A highly stable deferred correction scheme with interpolant for systems of nonlinear two-point boundary value problems. J. Comput. Appl. Math. 155, 339–358 (2003)

    Article  MathSciNet  Google Scholar 

  11. Lentini, M., Pereyra, V.: An adaptive finite difference solver for nonlinear two-point boundary value problems with mild boundary layers. SIAM J. Numer. Anal. 14, 91–111 (1977)

    Article  Google Scholar 

  12. Cash, J.R., Moore, G., Wright, R.W.: An automatic continuation strategy for the solution of singularly perturbed nonlinear boundary value problems. ACM Trans. Math. Softw. 27, 245–266 (2001)

    Article  Google Scholar 

  13. Badakhshan, K.P., Kamyad, A.V.: Numerical solution of nonlinear optimal control problems using nonlinear programming. Appl. Math. Comput. 187, 1511–1519 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Abo-Hammour, Z.S., Asasfeh, A.G., Al-Smadi, A.M., Alsmadi, O.M.K.: A novel continuous genetic algorithm for the solution of optimal control problems. Optim. Control Appl. Methods 32, 414–432 (2011)

    Article  MathSciNet  Google Scholar 

  15. Alsayyed, O.: Numerical Solution of Temporal Two-Point Boundary Value Problems Using Continuous Genetic Algorithms, Ph.D. Thesis, University of Jordan, Jordan (2006)

  16. Cui, M., Lin, Y.: Nonlinear Numerical Analysis in the Reproducing Kernel Space. Nova Science, New York (2009)

    MATH  Google Scholar 

  17. Berlinet, A., Agnan, C.T.: Reproducing Kernel Hilbert Space in Probability and Statistics. Kluwer Academic Publishers, Boston (2004)

    Book  Google Scholar 

  18. Daniel, A.: Reproducing Kernel Spaces and Applications. Springer, Basel (2003)

    MATH  Google Scholar 

  19. Weinert, H.L.: Reproducing Kernel Hilbert Spaces: Applications in Statistical Signal Processing. Hutchinson Ross, London (1982)

    Google Scholar 

  20. Lin, Y., Cui, M., Yang, L.: Representation of the exact solution for a kind of nonlinear partial differential equations. Appl. Math. Lett. 19, 808–813 (2006)

    Article  MathSciNet  Google Scholar 

  21. Zhoua, Y., Cui, M., Lin, Y.: Numerical algorithm for parabolic problems with non-classical conditions. J. Comput. Appl. Math. 230, 770–780 (2009)

    Article  MathSciNet  Google Scholar 

  22. Yang, L.H., Lin, Y.: Reproducing kernel methods for solving linear initial-boundary-value problems. Electron. J. Differ. Equ. 2008, 1–11 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Abu Arqub, O., Maayah, B.: Solutions of Bagley–Torvik and Painlevé equations of fractional order using iterative reproducing kernel algorithm. Neural Comput. Appl. 29, 1465–1479 (2018)

    Article  Google Scholar 

  24. Abu Arqub, O.: The reproducing kernel algorithm for handling differential algebraic systems of ordinary differential equations. Math. Methods Appl. Sci. 39, 4549–4562 (2016)

    Article  MathSciNet  Google Scholar 

  25. Abu Arqub, O., Al-Smadi, M., Shawagfeh, N.: Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method. Appl. Math. Comput. 219, 8938–8948 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Abu Arqub, O., Al-Smadi, M.: Numerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equations. Appl. Math. Comput. 243, 911–922 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Momani, S., Abu Arqub, O., Hayat, T., Al-Sulami, H.: A computational method for solving periodic boundary value problems for integro-differential equations of Fredholm-Voltera type. Appl. Math. Comput. 240, 229–239 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Abu Arqub, O., Al-Smadi, M., Momani, S., Hayat, T.: Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft. Comput. 20, 3283–3302 (2016)

    Article  Google Scholar 

  29. Abu Arqub, O., Al-Smadi, M., Momani, S., Hayat, T.: Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems. Soft. Comput. 21, 7191–7206 (2017)

    Article  Google Scholar 

  30. Abu Arqub, O.: Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm-Volterra integrodifferential equations. Neural Comput. Appl. 28, 1591–1610 (2017)

    Article  Google Scholar 

  31. Abu Arqub, O.: Approximate solutions of DASs with nonclassical boundary conditions using novel reproducing kernel algorithm. Fundam. Inf. 146, 231–254 (2016)

    Article  MathSciNet  Google Scholar 

  32. Abu Arqub, O.: Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditions. Comput. Math Appl. 73, 1243–1261 (2017)

    Article  MathSciNet  Google Scholar 

  33. Abu Arqub, O.: Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm. Int. J. Numer. Methods Heat Fluid Flow 28, 828–856 (2018)

    Article  Google Scholar 

  34. Abu Arqub, O., Al-Smadi, M.: Numerical algorithm for solving time-fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditions. Numer. Methods Partial Differ. Equ. (2017). https://doi.org/10.1002/num.22209

    Article  Google Scholar 

  35. Abu Arqub, O.: Computational algorithm for solving singular Fredholm time-fractional partial integrodifferential equations with error estimates. J. Appl. Math. Comput. (2018). https://doi.org/10.1007/s12190-018-1176-x

    Article  Google Scholar 

  36. Abu Arqub, O., Shawagfeh, N.: Application of reproducing kernel algorithm for solving Dirichlet time-fractional diffusion-Gordon types equations in porous media. J. Porous Med. (2017). In Press

  37. Abu Arqub, O.: Solutions of time-fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert space. Numer. Methods Partial Differ. Equ. (2017). https://doi.org/10.1002/num.22236

    Article  Google Scholar 

  38. Abu Arqub, O., Rashaideh, H.: The RKHS method for numerical treatment for integrodifferential algebraic systems of temporal two-point BVPs. Neural Comput. Appl. (2017). https://doi.org/10.1007/s00521-017-2845-7

    Article  Google Scholar 

  39. Geng, F.Z., Qian, S.P.: Reproducing kernel method for singularly perturbed turning point problems having twin boundary layers. Appl. Math. Lett. 26, 998–1004 (2013)

    Article  MathSciNet  Google Scholar 

  40. Jiang, W., Chen, Z.: A collocation method based on reproducing kernel for a modified anomalous subdiffusion equation. Numer. Methods Partial Differ. Equ. 30, 289–300 (2014)

    Article  MathSciNet  Google Scholar 

  41. Geng, F.Z., Qian, S.P., Li, S.: A numerical method for singularly perturbed turning point problems with an interior layer. J. Comput. Appl. Math. 255, 97–105 (2014)

    Article  MathSciNet  Google Scholar 

  42. Geng, F.Z., Cui, M.: A reproducing kernel method for solving nonlocal fractional boundary value problems. Appl. Math. Lett. 25, 818–823 (2012)

    Article  MathSciNet  Google Scholar 

  43. Jiang, W., Chen, Z.: Solving a system of linear Volterra integral equations using the new reproducing kernel method. Appl. Math. Comput. 219, 10225–10230 (2013)

    MathSciNet  MATH  Google Scholar 

  44. Geng, F.Z., Qian, S.P.: Modified reproducing kernel method for singularly perturbed boundary value problems with a delay. Appl. Math. Model. 39, 5592–5597 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to express his gratitude to the unknown referees for carefully reading the paper and their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Abu Arqub.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu Arqub, O. Numerical solutions of systems of first-order, two-point BVPs based on the reproducing kernel algorithm. Calcolo 55, 31 (2018). https://doi.org/10.1007/s10092-018-0274-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-018-0274-3

Keywords

Mathematics Subject Classification

Navigation