Skip to main content
Log in

A block-symmetric linearization of odd degree matrix polynomials with optimal eigenvalue condition number and backward error

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

The standard way of solving numerically a polynomial eigenvalue problem (PEP) is to use a linearization and solve the corresponding generalized eigenvalue problem (GEP). In addition, if the PEP possesses one of the structures arising very often in applications, then the use of a linearization that preserves such structure combined with a structured algorithm for the GEP presents considerable numerical advantages. Block-symmetric linearizations have proven to be very useful for constructing structured linearizations of structured matrix polynomials. In this scenario, we analyze the eigenvalue condition numbers and backward errors of approximated eigenpairs of a block symmetric linearization that was introduced by Fiedler (Linear Algebra Appl 372:325–331, 2003) for scalar polynomials and generalized to matrix polynomials by Antoniou and Vologiannidis (Electron J Linear Algebra 11:78–87, 2004). This analysis reveals that such linearization has much better numerical properties than any other block-symmetric linearization analyzed so far in the literature, including those in the well known vector space \(\mathbb {DL}(P)\) of block-symmetric linearizations. The main drawback of the analyzed linearization is that it can be constructed only for matrix polynomials of odd degree, but we believe that it will be possible to extend its use to even degree polynomials via some strategies in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adhikari, B., Alam, R., Kressner, D.: Structured eigenvalue condition numbers and linearizations for matrix polynomials. Linear Algebra Appl. 435, 2193–2221 (2011)

    Article  MathSciNet  Google Scholar 

  2. Al-Ammari, M., Tisseur, F.: Hermitian matrix polynomials with real eigenvalues of definite type. Part I: classification. Linear Algebra Appl. 436, 3954–3973 (2012)

    Article  MathSciNet  Google Scholar 

  3. Antoniou, E.N., Vologiannidis, S.: A new family of companion forms of polynomial matrices. Electron. J. Linear Algebra 11, 78–87 (2004)

    Article  MathSciNet  Google Scholar 

  4. Betcke, T., Higham, N. J., Mehrmann, V., Schröder, C., Tisseur, F.: NLEVP: a collection of nonlinear eigenvalue problems. ACM Trans. Math. Softw. 39(2), 7:1–7:28 (2013)

    Article  Google Scholar 

  5. Bini, D.A., Gemignani, L., Tisseur, F.: The Ehrlich–Aberth method for the nonsymmetric tridiagonal eigenvalue problem. SIAM J. Matrix Anal. Appl. 27, 153–175 (2005)

    Article  MathSciNet  Google Scholar 

  6. Bini, D.A., Noferini, V.: Solving polynomial eigenvalue problems by means of the Ehrlich–Aberth method. Linear Algebra Appl. 439, 1130–1149 (2013)

    Article  MathSciNet  Google Scholar 

  7. Bora, S.: Structured eigenvalue condition number and backward error of a class of polynomial eigenvalue problems. SIAM J. Matrix Anal. Appl. 31(3), 900–917 (2009)

    Article  MathSciNet  Google Scholar 

  8. Bueno, M. I., Martin, M., Pérez, J., Song, A., Viviano, I.: Explicit block-structures for block-symmetric Fiedler-like pencils. To appear in ELA

  9. Bueno, M.I., Breen, J., Ford, S., Furtado, S.: On the sign characteristic of Hermitian linearizations in \(\mathbb{DL}(P)\). Linear Algebra Appl. 519, 73–101 (2017)

    Article  MathSciNet  Google Scholar 

  10. Bueno, M.I., Dopico, F.M., Furtado, S., Rychnovsky, M.: Large vector spaces of block-symmetric strong linearizations. Linear Algebra Appl. 477, 165–210 (2015)

    Article  MathSciNet  Google Scholar 

  11. Bueno, M.I., De Terán, F., Dopico, F.M.: Recovery of eigenvectors and minimal bases of matrix polynomials from generalized Fiedler linearizations. SIAM J. Matrix. Anal. Appl. 32, 463–483 (2011)

    Article  MathSciNet  Google Scholar 

  12. Campos, C., Román, J.: Parallel Krylov solvers for the polynomial eigenvalue problem in SLEPc. SIAM J. Sci. Comput. 38, S385–S411 (2016)

    Article  MathSciNet  Google Scholar 

  13. De Terán, F., Dopico, F.M., Mackey, D.S.: Spectral equivalence of matrix polynomials and the Index Sum Theorem. Linear Algebra Appl. 459, 264–333 (2014)

    Article  MathSciNet  Google Scholar 

  14. Dopico, F. M., Lawrence, P., Pérez, J., Van Dooren, P.: Block Kronecker linearizations of matrix polynomials and their backward errors. To appear in Numerische Mathematik (2018). arXiv:1707.04843v1

    Article  MathSciNet  Google Scholar 

  15. Dopico, F. M., Pérez, J., Van Dooren, P.: Structured backward error analysis of linearized structured polynomial eigenvalue problems. To appear in Mathematics of Computation (2018). arXiv:1612.07011v1

  16. Fassbender, H., Saltenberger, P.: On vector spaces of linearizations for matrix polynomials in orthogonal bases. Linear Algebra Appl. 525, 59–83 (2017)

    Article  MathSciNet  Google Scholar 

  17. Fassbender, H., Saltenberger, P.: Block Kronecker ansatz spaces for matrix polynomials. Linear Algebra Appl. (2017). https://doi.org/10.1016/j.laa.2017.03.019

    Article  MATH  Google Scholar 

  18. Fiedler, M.: A note on companion matrices. Linear Algebra Appl. 372, 325–331 (2003)

    Article  MathSciNet  Google Scholar 

  19. Gohberg, I., Lancaster, P., Rodman, L.: Indefinite Linear Algebra and Applications. Springer, Basel (2005)

    MATH  Google Scholar 

  20. Gohberg, I., Lancaster, P., Rodman, L.: Matrix Polynomials. SIAM, Philadelphia (2009)

    Book  Google Scholar 

  21. Güttel, S., Tisseur, F.: The nonlinear eigenvalue problem. Acta Numer. 26, 1–94 (2017)

    Article  MathSciNet  Google Scholar 

  22. Hammarling, S., Munro, C.J., Tisseur, F.: An algorithm for the complete solution of quadratic eigenvalue problems. ACM Trans. Math. Softw. 39, 18:1–18:19 (2013)

    Article  MathSciNet  Google Scholar 

  23. Higham, N.J., Li, R.-C., Tisseur, F.: Backward error of polynomial eigenproblems solved by linearization. SIAM J. Matrix Anal. Appl. 29, 1218–1241 (2007)

    Article  MathSciNet  Google Scholar 

  24. Higham, N.J., Mackey, D.S., Tisseur, F.: The conditioning of linearizations of matrix polynomials. SIAM J. Matrix Anal. Appl. 28, 1005–1028 (2006)

    Article  MathSciNet  Google Scholar 

  25. Higham, N.J., Mackey, D.S., Mackey, N., Tisseur, F.: Symmetric linearizations for matrix polynomials. SIAM J. Matrix Anal. Appl. 29, 143–159 (2006)

    Article  MathSciNet  Google Scholar 

  26. Kressner, D., Roman, J.: Memory-efficient Arnoldi algorithms for linearizations of matrix polynomials in Chebyshev basis. Numer. Linear Algebra Appl. 21, 569–588 (2014)

    Article  MathSciNet  Google Scholar 

  27. Lancaster, P.: Symmetric transformations of the companion matrix. NABLA Bull. Malay. Math. Soc. 8, 146–148 (1961)

    Google Scholar 

  28. Lawrence, P., Van Barel, M., Van Dooren, P.: Backward error analysis of polynomial eigenvalue problems solved by linearization. SIAM J. Matrix Anal. Appl. 37, 123–144 (2016)

    Article  MathSciNet  Google Scholar 

  29. Lu, D., Su, Y., Bai, Z.: Stability analysis of the two-level orthogonal Arnoldi procedure. SIAM J. Matrix Anal. Appl. 37, 192–214 (2016)

    Article  MathSciNet  Google Scholar 

  30. Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Vector spaces of linearizations for matrix polynomials. SIAM J. Matrix Anal. Appl. 28, 867–891 (2006)

    MathSciNet  MATH  Google Scholar 

  31. Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Structured polynomial eigenvalue problems: good vibrations from good linearizations. SIAM J. Matrix Anal. Appl. 28, 1029–1051 (2006)

    Article  MathSciNet  Google Scholar 

  32. Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Jordan structures of alternating matrix polynomials. Linear Algebra Appl. 432, 971–1004 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Smith forms of palindromic matrix polynomials. Electron. J. Linear Algebra 22, 53–91 (2011)

    Article  MathSciNet  Google Scholar 

  34. Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Skew-symmetric matrix polynomials and their Smith forms. Linear Algebra Appl. 438, 4625–4653 (2013)

    Article  MathSciNet  Google Scholar 

  35. Mehrmann, V., Voss, H.: Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods. GAMM Mitt. Ges. Anqew. Math. Mech. 27, 121–152 (2004)

    Article  MathSciNet  Google Scholar 

  36. Moler, C.B., Stewart, G.W.: An algorithm for generalized matrix eigenvalue problems. SIAM J. Numer. Anal. 10, 241–256 (1973)

    Article  MathSciNet  Google Scholar 

  37. Nakatsukasa, Y., Noferini, V., Townsend, A.: Vector spaces of linearizations for matrix polynomials: a bivariate polynomial approach. SIAM J. Matrix Anal. Appl. 38, 1–29 (2017)

    Article  MathSciNet  Google Scholar 

  38. Tisseur, F.: Backward error and condition of polynomial eigenvalue problems. Linear Algebra Appl. 309, 339–361 (2000)

    Article  MathSciNet  Google Scholar 

  39. Tisseur, F.: Tridiagonal-diagonal reduction of symmetric indefinite pairs. SIAM J. Matrix Anal. Appl. 26, 215–232 (2004)

    Article  MathSciNet  Google Scholar 

  40. Tisseur, F., Meerbergen, K.: The quadratic eigenvalue problem. SIAM Rev. 43, 235–286 (2001)

    Article  MathSciNet  Google Scholar 

  41. Van Barel, M., Tisseur, F.: Polynomial eigenvalue solver based on tropically scaled Lagrange linearization. Linear Algebra Appl. (2017). https://doi.org/10.1016/j.laa.2017.04.025

    Article  Google Scholar 

  42. Van Beeumen, R., Meerbergen, K., Michiels, W.: Compact rational Krylov methods for nonlinear eigenvalue problems. SIAM J. Matrix Anal. Appl. 36, 820–838 (2015)

    Article  MathSciNet  Google Scholar 

  43. Van Dooren, P., Dewilde, P.: The eigenstructure of an arbitrary polynomial matrix: computational aspects. Linear Algebra Appl. 50, 545–579 (1983)

    Article  MathSciNet  Google Scholar 

  44. Zeng, L., Su, Y.: A backward stable algorithm for quadratic eigenvalue problems. SIAM J. Matrix Anal. Appl. 35, 499–516 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the two anonymous referees for reading our manuscript so thoroughly and providing such constructive feedback. They asked very interesting questions that helped us improve our paper significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Bueno.

Additional information

The research of M. I. Bueno was partially supported by NSF Grant DMS-1358884 and partially supported by “Ministerio de Economía, Industria y Competitividad of Spain” and “Fondo Europeo de Desarrollo Regional (FEDER) of EU” through Grant MTM-2015-65798-P (MINECO/FEDER, UE). The research of F. M. Dopico was partially supported by “Ministerio de Economía, Industria y Competitividad of Spain” and “Fondo Europeo de Desarrollo Regional (FEDER) of EU” through Grants MTM-2015-68805-REDT and MTM-2015-65798-P (MINECO/FEDER, UE). The research of S. Furtado was partially supported by Project UID/MAT/04721/2013. The research of L. Medina was partially supported by NSF Grant DMS-1358884.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bueno, M.I., Dopico, F.M., Furtado, S. et al. A block-symmetric linearization of odd degree matrix polynomials with optimal eigenvalue condition number and backward error. Calcolo 55, 32 (2018). https://doi.org/10.1007/s10092-018-0273-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-018-0273-4

Keywords

Mathematics Subject Classification

Navigation