Skip to main content
Log in

Reliable and efficient a posteriori error estimates for finite element approximations of the parabolic \(p\)-Laplacian

  • Original Paper
  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

We generalize the a posteriori techniques for the linear heat equation in Verfürth (Calcolo 40(3):195–212, 2003) to the case of the nonlinear parabolic \(p\)-Laplace problem thereby proving reliable and efficient a posteriori error estimates for a fully discrete implicite Euler Galerkin finite element scheme. The error is analyzed using the so-called quasi-norm and a related dual error expression. This leads to equivalence of the error and the residual, which is the key property for proving the error bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belenki, L., Berselli, L., Diening, L., R\(\breve{\rm u}\)žička, M.: On the finite element approximation of \(p\)-stokes systems. SIAM J. Numer. Anal. 50(2), 373–397 (2012)

  2. Belenki, L., Diening, L., Kreuzer, C.: Optimality of an adaptive finite element method for the \(p\)-laplacian equation. IMA J. Numer. Anal. 32(2), 484–510 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barrett, J.W., Liu, W.B.: Finite element approximation of the \(p\)-Laplacian. Math. Comput. 61(204), 523–537 (1993)

    MathSciNet  MATH  Google Scholar 

  4. Barrett, J.W., Liu, W.B.: Finite element error analysis of a quasi-newtonian flow obeying the Carreau or power law. Numer. Math. 64(4), 433–453 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barrett, J.W., Liu, W.B.: Finite element approximation of the parabolic \(p\)-Laplacian. SIAM J. Numer. Anal. 31(2), 413–428 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Z., Feng, J.: An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems. Math. Comp. 73, 1167–1042 (2006)

    Article  MathSciNet  Google Scholar 

  7. Chow, S.-S.: Finite element error estimates for nonlinear elliptic equations of monotone type. Numer. Math. 54(4), 373–393 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ciarlet, P.G.: The finite element method for elliptic problems, Studies in mathematics and its applications, vol. 4. North-Holland Publishing Co., Amsterdam (1978)

    Google Scholar 

  9. Carstensen, C., Klose, R.: A posteriori finite element error control for the \(p\)-Laplace problem. SIAM J. Sci. Comput. 25(3), 792–814 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carstensen, C., Liu, W., Yan, N.: A posteriori FE error control for \(p\)-Laplacian by gradient recovery in quasi-norm. Math. Comput. 75(256), 1599–1616 (2006) (electroni)

    Google Scholar 

  11. Carstensen, C., Liu, W., Yan, N.: A posteriori error estimates for finite element approximation of parabolic \(p\)-Laplacian. SIAM J. Numer. Anal. 43(6), 2294–2319 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Diening, L., Ettwein, F.: Fractional estimates for non-differentiable elliptic systems with general growth. Forum Math. 3, 523–556 (2002)

    MathSciNet  Google Scholar 

  13. Diening, L., Ebmeyer, C., R\(\breve{\rm u}\)žička, M.: Optimal convergence for the implicit space-time discretization of parabolic systems with \(p\)-structure. SIAM J. Numer. Anal. 45(2), 457–472 (2007)

  14. Diening, L., Kreuzer, C.: Convergence of an adaptive finite element method for the \(p\)-Laplacian equation. SIAM J. Numer. Anal. 46(2), 614–638 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Diening, L., R\(\breve{\rm u}\)žička, M.: Interpolation operators in Orlicz-Sobolev spaces. Numer. Math. 107(1), 107–129 (2007)

  16. Diening, L., R\(\breve{\rm u}\)žička, M.: Non-Newtonian fluids and function spaces. Nonlinear Anal. Funct. Spaces Appl. 8, 95–143 (2007)

  17. Ebmeyer, C., Liu, W.: Quasi-norm interpolation error estimates for the piecewise linear finite element approximation of \(p\)-Laplacian problems. Numer. Math. 100(2), 233–258 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gajewski, H., Gröger, K., Zacharias, K.: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Mathematische Lehrbücher und Monographien. II. Abteilung. Band 38. Akademie-Verlag, Berlin. IX, 281 S., German (1974)

  19. Glowinski, R., Marrocco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires. Rev. Française Automat. Informat. Recherche Opérationnelle RAIRO Analyse Numérique 9(R-2), 41–76 (1975)

  20. Kokilashvili, V., Krbec, M.: Weighted inequalities in Lorentz and Orlicz spaces. World Scientific Publishing Co. Pte. Ltd., Singapore (1991)

    Book  MATH  Google Scholar 

  21. Kreuzer, C., Möller, C.A., Schmidt, A., Siebert, K.G.: Design and convergence analysis for an adaptive discretization of the heat equation Preprint SM-DU-724 Universität Duisburg-Essen. IMA J. Numer. Anal, In (December 2010). (2011, to appear)

  22. Krasnosel’skij, M.A., Rutitskij, Y.B.: Convex functions and Orlicz spaces. P. Noordhoff Ltd., Groningen (1961)

    MATH  Google Scholar 

  23. Kreuzer, C.: A convergent adaptive Uzawa finite element method for the nonlinear Stokes problem, Ph.D. thesis, Mathematisches Institut, Universität Augsburg (2008).

  24. Kreuzer, C.: Analysis of an adaptive uzawa finite element method for the nonlinear Stokes problem. Math. Comput. 81, 21–55 (2012)

    Google Scholar 

  25. Liu, W., Yan, N.: Quasi-norm local error estimators for \(p\)-Laplacian. SIAM J. Numer. Anal. 39(1), 100–127 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, W., Yan, N.: On quasi-norm interpolation error estimation and a posteriori error estimates for \(p\)-Laplacian. SIAM J. Numer. Anal. 40(5), 1870–1895 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Musielak, J.: Orlicz spaces and modular spaces. Lecture notes in mathematics, vol. 1034. Springer-Verlag, Berlin (1983)

  28. Rao, M.M., Ren, Z.D.: Theory of Orlicz spaces. In: Pure and applied mathematics, vol. 146. Marcel Dekker, Inc., New York (1991)

  29. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54(190), 483–493 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  30. Verfürth, R.: A posteriori error estimates for finite element discretizations of the heat equation. Calcolo 40(3), 195–212 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Verfürth, R.: Robust a posteriori error estimates for nonstationary convection-diffusion equations. SIAM J. Numer. Anal 43(4), 1783–1802 (2005). (electronic)

    Google Scholar 

  32. Zeidler, E.: Nonlinear functional analysis and its applications. II/A: Linear monotone operators. Transl. from the German by the author and by Leo F. Boron. Springer-Verlag, New York (1990)

Download references

Acknowledgments

Part of this work was carried out during a stay at the Mathematical Institute of the University of Oxford. This stay was financed by the German Research Foundation DFG within the research grant Kr 3984/1-1. Last but not least I would like to thank Prof. Endre Süli for his great hospitality and many fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Kreuzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreuzer, C. Reliable and efficient a posteriori error estimates for finite element approximations of the parabolic \(p\)-Laplacian. Calcolo 50, 79–110 (2013). https://doi.org/10.1007/s10092-012-0059-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10092-012-0059-z

Keywords

Mathematics Subject Classification (2010)

Navigation