Skip to main content

Advertisement

Log in

From lab bench to hope: a review of gene therapies in clinical trials for Parkinson’s disease and challenges

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Parkinson's disease (PD) is a chronic neurological disorder that is identified by a characteristic combination of symptoms such as bradykinesia, resting tremor, rigidity, and postural instability. It is the second most common neurodegenerative disease after Alzheimer's disease and is characterized by the progressive loss of dopamine-producing neurons in the brain. Currently, available treatments for PD are symptomatic and do not prevent the disease pathology. There is growing interest in developing disease-modifying therapy that can reduce disease progression and improve patients’ quality of life. One of the promising therapeutic approaches under evaluation is gene therapy utilizing a viral vector, adeno-associated virus (AAV), to deliver transgene of interest into the central nervous system (CNS). Preclinical studies in small animals and nonhuman primates model of PD have shown promising results utilizing the gene therapy that express glial cell line-derived neurotrophic factor (GDNF), cerebral dopamine neurotrophic factor (CDNF), aromatic L-amino acid decarboxylase (AADC), and glutamic acid decarboxylase (GAD). This study provides a comprehensive review of the current state of the above-mentioned gene therapies in various phases of clinical trials for PD treatment. We have highlighted the rationale for the gene-therapy approach and the findings from the preclinical and nonhuman primates studies, evaluating the therapeutic effect, dose safety, and tolerability. The challenges associated with gene therapy for heterogeneous neurodegenerative diseases, such as PD, have also been described. In conclusion, the review identifies the ongoing promising gene therapy approaches in clinical trials and provides hope for patients with PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Airavaara M, Harvey BK, Voutilainen MH, Shen H, Chou J, Lindholm P, Lindahl M, Tuominen RK, Saarma M, Hoffer B, Wang Y (2012) CDNF protects the nigrostriatal dopamine system and promotes recovery after MPTP treatment in mice. Cell Transplant 21(6):1213–1223

    Article  PubMed  Google Scholar 

  2. Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  CAS  PubMed  Google Scholar 

  3. Armstrong MJ, Okun MS (2020) Diagnosis and treatment of Parkinson disease: a review. JAMA 323(6):548–560

    Article  PubMed  Google Scholar 

  4. Ayanlaja AA, Zhang B, Ji G, Gao Y, Wang J, Kanwore K, Gao D (2018) The reversible effects of glial cell line-derived neurotrophic factor (GDNF) in the human brain. Semin Cancer Biol 53:212–222

    Article  CAS  PubMed  Google Scholar 

  5. Bäck S, Peränen J, Galli E, Pulkkila P, Lonka-Nevalaita L, Tamminen T, Voutilainen MH, Raasmaja A, Saarma M, Männistö PT, Tuominen RK (2013) Gene therapy with AAV2-CDNF provides functional benefits in a rat model of Parkinson’s disease. Brain Behav 3(2):75–88

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bankiewicz KS, Forsayeth J, Eberling JL, Sanchez-Pernaute R, Pivirotto P, Bringas J, Herscovitch P, Carson RE, Eckelman W, Reutter B, Cunningham J (2006) Long-term clinical improvement in MPTP-lesioned primates after gene therapy with AAV-hAADC. Mol Ther 14(4):564–570

    Article  CAS  PubMed  Google Scholar 

  7. Barker RA, Björklund A, Gash DM, Whone A, Van Laar A, Kordower JH, Bankiewicz K, Kieburtz K, Saarma M, Booms S, Huttunen HJ, Kells AP, Fiandaca MS, Stoessl AJ, Eidelberg D, Federoff H, Voutilainen MH, Dexter DT, Eberling J, Brundin P, Isaacs L, Mursaleen L, Bresolin E, Carroll C, Coles A, Fiske B, Matthews H, Lungu C, Wyse RK, Stott S, Lang AE (2020) GDNF and Parkinson’s disease: where next? A summary from a recent workshop. J Parkinsons Dis 10(3):875–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bondarenko O, Saarma M (2021) Neurotrophic factors in Parkinson’s disease: clinical trials, open challenges and nanoparticle-mediated delivery to the brain. Front Cell Neurosci 15:682597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Christine CW, Starr PA, Larson PS, Eberling JL, Jagust WJ, Hawkins RA, VanBrocklin HF, Wright JF, Bankiewicz KS, Aminoff MJ (2009) Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology 73(20):1662–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Christine CW, Bankiewicz KS, Van Laar AD, Richardson RM, Ravina B, Kells AP, Boot B, Martin AJ, Nutt J, Thompson ME, Larson PS (2019) Magnetic resonance imaging-guided phase 1 trial of putaminal AADC gene therapy for Parkinson’s disease. Ann Neurol 85(5):704–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Christine CW, Richardson RM, Van Laar AD, Thompson ME, Fine EM, Khwaja OS, Li C, Liang GS, Meier A, Roberts EW, Pfau ML, Rodman JR, Bankiewicz KS, Larson PS (2022) Safety of AADC gene therapy for moderately advanced Parkinson disease: three-year outcomes from the PD-1101 trial. Neurology 98(1):e40–e50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ciesielska A, Samaranch L, San Sebastian W, Dickson DW, Goldman S, Forsayeth J, Bankiewicz KS (2017) Depletion of AADC activity in caudate nucleus and putamen of Parkinson’s disease patients; implications for ongoing AAV2-AADC gene therapy trial. PLoS ONE 12(2):e0169965

    Article  PubMed  PubMed Central  Google Scholar 

  13. Du Y, Zhang X, Tao Q, Chen S, Le W (2013) Adeno-associated virus type 2 vector-mediated glial cell line-derived neurotrophic factor gene transfer induces neuroprotection and neuroregeneration in a ubiquitin-proteasome system impairment animal model of Parkinson’s disease. Neurodegener Dis 11(3):113–128

    Article  CAS  PubMed  Google Scholar 

  14. Dumbhare O, Gaurkar SS (2023) A review of genetic and gene therapy for Parkinson’s disease. Cureus 15(2):e34657

    PubMed  PubMed Central  Google Scholar 

  15. Eberling JL, Jagust WJ, Christine CW, Starr P, Larson P, Bankiewicz KS, Aminoff MJ (2008) Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology 70(21):1980–1983

    Article  CAS  PubMed  Google Scholar 

  16. Eesmaa A, Yu LY, Göös H, Danilova T, Nõges K, Pakarinen E, Varjosalo M, Lindahl M, Lindholm P, Saarma M (2022) CDNF interacts with ER chaperones and requires UPR sensors to promote neuronal survival. Int J Mol Sci 23(16):9489

  17. El Hayek M, Lobo Jofili Lopes JLM, LeLaurin JH, Gregory ME, Abi Nehme AM, McCall-Junkin P, Au KLK, Okun MS, Salloum RG (2023) Type, timing, frequency, and durability of outcome of physical therapy for Parkinson disease: a systematic review and meta-analysis. JAMA Netw Open 6(7):e2324860

    Article  PubMed  PubMed Central  Google Scholar 

  18. Emborg ME, Carbon M, Holden JE, During MJ, Ma Y, Tang C, Moirano J, Fitzsimons H, Roitberg BZ, Tuccar E, Roberts A, Kaplitt MG, Eidelberg D (2007) Subthalamic glutamic acid decarboxylase gene therapy: changes in motor function and cortical metabolism. J Cereb Blood Flow Metab 27(3):501–509

    Article  CAS  PubMed  Google Scholar 

  19. Eremin DV, Ilchibaeva TV, Tsybko AS (2021) Cerebral Dopamine Neurotrophic Factor (CDNF): structure, functions, and therapeutic potential. Biochemistry (Mosc) 86(7):852–866

    Article  CAS  PubMed  Google Scholar 

  20. Fan DS, Ogawa M, Fujimoto KI, Ikeguchi K, Ogasawara Y, Urabe M, Nishizawa M, Nakano I, Yoshida M, Nagatsu I, Ichinose H, Nagatsu T, Kurtzman GJ, Ozawa K (1998) Behavioral recovery in 6-hydroxydopamine-lesioned rats by cotransduction of striatum with tyrosine hydroxylase and aromatic L-amino acid decarboxylase genes using two separate adeno-associated virus vectors. Hum Gene Ther 9(17):2527–2535

    Article  CAS  PubMed  Google Scholar 

  21. Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK (2009) Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 27(1):59–65

    Article  CAS  PubMed  Google Scholar 

  22. Fox SH, Katzenschlager R, Lim SY, Barton B, de Bie RMA, Seppi K, Coelho M, Sampaio C, Committee MDSE-BM (2018) International Parkinson and movement disorder society evidence-based medicine review: update on treatments for the motor symptoms of Parkinson’s disease. Mov Disord 33(8):1248–1266

    Article  CAS  PubMed  Google Scholar 

  23. Grondin R, Littrell OM, Zhang Z, Ai Y, Huettl P, Pomerleau F, Quintero JE, Andersen AH, Stenslik MJ, Bradley LH, Lemmon J, O’Neill MJ, Gash DM, Gerhardt GA (2019) GDNF revisited: a novel mammalian cell-derived variant form of GDNF increases dopamine turnover and improves brain biodistribution. Neuropharmacology 147:28–36

    Article  CAS  PubMed  Google Scholar 

  24. Heiss JD, Lungu C, Hammoud DA, Herscovitch P, Ehrlich DJ, Argersinger DP, Sinharay S, Scott G, Wu T, Federoff HJ, Zaghloul KA, Hallett M, Lonser RR, Bankiewicz KS (2019) Trial of magnetic resonance-guided putaminal gene therapy for advanced Parkinson’s disease. Mov Disord 34(7):1073–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hudry E, Vandenberghe LH (2019) Therapeutic AAV gene transfer to the nervous system: a clinical reality. Neuron 101(5):839–862

    Article  CAS  PubMed  Google Scholar 

  26. Huttunen HJ, Saarma M (2019) CDNF protein therapy in Parkinson’s disease. Cell Transplant 28(4):349–366

    Article  PubMed  PubMed Central  Google Scholar 

  27. Huttunen HJ, Booms S, Sjögren M, Kerstens V, Johansson J, Holmnäs R, Koskinen J, Kulesskaya N, Fazio P, Woolley M, Brady A, Williams J, Johnson D, Dailami N, Gray W, Levo R, Saarma M, Halldin C, Marjamaa J, Resendiz-Nieves J, Grubor I, Lind G, Eerola-Rautio J, Mertsalmi T, Andréasson M, Paul G, Rinne J, Kivisaari R, Bjartmarz H, Almqvist P, Varrone A, Scheperjans F, Widner H, Svenningsson P (2023) Intraputamenal cerebral dopamine neurotrophic factor in Parkinson’s disease: a randomized, double-blind, multicenter phase 1 trial. Mov Disord 38(7):1209–1222

    Article  CAS  PubMed  Google Scholar 

  28. Hwu PW, Kiening K, Anselm I, Compton DR, Nakajima T, Opladen T, Pearl PL, Roubertie A, Roujeau T, Muramatsu SI (2021) Gene therapy in the putamen for curing AADC deficiency and Parkinson’s disease. EMBO Mol Med 13(9):e14712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kaplitt MG, Feigin A, Tang C, Fitzsimons HL, Mattis P, Lawlor PA, Bland RJ, Young D, Strybing K, Eidelberg D, During MJ (2007) Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet 369(9579):2097–2105

    Article  CAS  PubMed  Google Scholar 

  30. Kartik S, Pal R, Chaudhary MJ, Nath R, Kumar M, Binwal M, Bawankule DU (2023) Neuroprotective role of chloroquine via modulation of autophagy and neuroinflammation in MPTP-induced Parkinson’s disease. Inflammopharmacology 31(2):927–941

    Article  CAS  PubMed  Google Scholar 

  31. Kells AP, Eberling J, Su X, Pivirotto P, Bringas J, Hadaczek P, Narrow WC, Bowers WJ, Federoff HJ, Forsayeth J, Bankiewicz KS (2010) Regeneration of the MPTP-lesioned dopaminergic system after convection-enhanced delivery of AAV2-GDNF. J Neurosci 30(28):9567–9577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kells AP, Forsayeth J, Bankiewicz KS (2012) Glial-derived neurotrophic factor gene transfer for Parkinson’s disease: anterograde distribution of AAV2 vectors in the primate brain. Neurobiol Dis 48(2):228–235

    Article  CAS  PubMed  Google Scholar 

  33. Lapchak PA, Araujo DM, Hilt DC, Sheng J, Jiao S (1997) Adenoviral vector-mediated GDNF gene therapy in a rodent lesion model of late stage Parkinson’s disease. Brain Res 777(1–2):153–160

    Article  CAS  PubMed  Google Scholar 

  34. LeWitt PA, Rezai AR, Leehey MA, Ojemann SG, Flaherty AW, Eskandar EN, Kostyk SK, Thomas K, Sarkar A, Siddiqui MS, Tatter SB, Schwalb JM, Poston KL, Henderson JM, Kurlan RM, Richard IH, Van Meter L, Sapan CV, During MJ, Kaplitt MG, Feigin A (2011) AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol 10(4):309–319

    Article  CAS  PubMed  Google Scholar 

  35. Lindahl M, Saarma M, Lindholm P (2017) Unconventional neurotrophic factors CDNF and MANF: structure, physiological functions and therapeutic potential. Neurobiol Dis 97(Pt B):90–102

    Article  CAS  PubMed  Google Scholar 

  36. Ling Q, Herstine JA, Bradbury A, Gray SJ (2023) AAV-based in vivo gene therapy for neurological disorders. Nat Rev Drug Discov 22(10):789–806

    Article  CAS  PubMed  Google Scholar 

  37. Lõhelaid H, Saarma M, Airavaara M (2024) CDNF and ER stress: Pharmacology and therapeutic possibilities. Pharmacol Ther 254:108594

    Article  PubMed  Google Scholar 

  38. Luo J, Kaplitt MG, Fitzsimons HL, Zuzga DS, Liu Y, Oshinsky ML, During MJ (2002) Subthalamic GAD gene therapy in a Parkinson’s disease rat model. Science 298(5592):425–429

    Article  CAS  PubMed  Google Scholar 

  39. Marsden CD (1994) Problems with long-term levodopa therapy for Parkinson’s disease. Clin Neuropharmacol 17(Suppl 2):S32-44

    PubMed  Google Scholar 

  40. Mittermeyer G, Christine CW, Rosenbluth KH, Baker SL, Starr P, Larson P, Kaplan PL, Forsayeth J, Aminoff MJ, Bankiewicz KS (2012) Long-term evaluation of a phase 1 study of AADC gene therapy for Parkinson’s disease. Hum Gene Ther 23(4):377–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Muramatsu S, Fujimoto K, Ikeguchi K, Shizuma N, Kawasaki K, Ono F, Shen Y, Wang L, Mizukami H, Kume A, Matsumura M, Nagatsu I, Urano F, Ichinose H, Nagatsu T, Terao K, Nakano I, Ozawa K (2002) Behavioral recovery in a primate model of Parkinson’s disease by triple transduction of striatal cells with adeno-associated viral vectors expressing dopamine-synthesizing enzymes. Hum Gene Ther 13(3):345–354

    Article  CAS  PubMed  Google Scholar 

  42. Muramatsu S, Fujimoto K, Kato S, Mizukami H, Asari S, Ikeguchi K, Kawakami T, Urabe M, Kume A, Sato T, Watanabe E, Ozawa K, Nakano I (2010) A phase I study of aromatic L-amino acid decarboxylase gene therapy for Parkinson’s disease. Mol Ther 18(9):1731–1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nadella R, Voutilainen MH, Saarma M, Gonzalez-Barrios JA, Leon-Chavez BA, Jiménez JM, Jiménez SH, Escobedo L, Martinez-Fong D (2014) Transient transfection of human CDNF gene reduces the 6-hydroxydopamine-induced neuroinflammation in the rat substantia nigra. J Neuroinflammation 11:209

    Article  PubMed  PubMed Central  Google Scholar 

  44. Niethammer M, Tang CC, LeWitt PA, Rezai AR, Leehey MA, Ojemann SG, Flaherty AW, Eskandar EN, Kostyk SK, Sarkar A, Siddiqui MS, Tatter SB, Schwalb JM, Poston KL, Henderson JM, Kurlan RM, Richard IH, Sapan CV, Eidelberg D, During MJ, Kaplitt MG, Feigin A (2017) Long-term follow-up of a randomized AAV2-. JCI Insight 2(7):e90133

    Article  PubMed  PubMed Central  Google Scholar 

  45. Nonnenmacher M, Wang W, Child MA, Ren XQ, Huang C, Ren AZ, Tocci J, Chen Q, Bittner K, Tyson K, Pande N, Chung CH, Paul SM, Hou J (2021) Rapid evolution of blood-brain-barrier-penetrating AAV capsids by RNA-driven biopanning. Mol Ther Methods Clin Dev 20:366–378

    Article  CAS  PubMed  Google Scholar 

  46. Palfi S, Leventhal L, Chu Y, Ma SY, Emborg M, Bakay R, Déglon N, Hantraye P, Aebischer P, Kordower JH (2002) Lentivirally delivered glial cell line-derived neurotrophic factor increases the number of striatal dopaminergic neurons in primate models of nigrostriatal degeneration. J Neurosci 22(12):4942–4954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Park H-J, Ryu D, Parmar M, Giasson BI, McFarland NR (2017) The ER retention protein RER1 promotes alpha-synuclein degradation via the proteasome. PLoS ONE 12(9):e0184262

    Article  PubMed  PubMed Central  Google Scholar 

  48. Potdar S, Parmar MS, Ray SD, Cavanaugh JE (2018) Protective effects of the resveratrol analog piceid in dopaminergic SH-SY5Y cells. Arch Toxicol 92(2):669–677

    Article  CAS  PubMed  Google Scholar 

  49. Ren X, Zhang T, Gong X, Hu G, Ding W, Wang X (2013) AAV2-mediated striatum delivery of human CDNF prevents the deterioration of midbrain dopamine neurons in a 6-hydroxydopamine induced parkinsonian rat model. Exp Neurol 248:148–156

    Article  CAS  PubMed  Google Scholar 

  50. Rose KM, Parmar MS, Cavanaugh JE (2014) Dietary supplementation with resveratrol protects against striatal dopaminergic deficits produced by in utero LPS exposure. Brain Res 1573:37–43

    Article  CAS  PubMed  Google Scholar 

  51. Salegio EA, Samaranch L, Kells AP, Mittermeyer G, San Sebastian W, Zhou S, Beyer J, Forsayeth J, Bankiewicz KS (2013) Axonal transport of adeno-associated viral vectors is serotype-dependent. Gene Ther 20(3):348–352

    Article  CAS  PubMed  Google Scholar 

  52. Shen Y, Muramatsu SI, Ikeguchi K, Fujimoto KI, Fan DS, Ogawa M, Mizukami H, Urabe M, Kume A, Nagatsu I, Urano F, Suzuki T, Ichinose H, Nagatsu T, Monahan J, Nakano I, Ozawa K (2000) Triple transduction with adeno-associated virus vectors expressing tyrosine hydroxylase, aromatic-L-amino-acid decarboxylase, and GTP cyclohydrolase I for gene therapy of Parkinson’s disease. Hum Gene Ther 11(11):1509–1519

    Article  CAS  PubMed  Google Scholar 

  53. Tereshchenko J, Maddalena A, Bähr M, Kügler S (2014) Pharmacologically controlled, discontinuous GDNF gene therapy restores motor function in a rat model of Parkinson’s disease. Neurobiol Dis 65:35–42

    Article  CAS  PubMed  Google Scholar 

  54. Virachit S, Mathews KJ, Cottam V, Werry E, Galli E, Rappou E, Lindholm P, Saarma M, Halliday GM, Shannon Weickert C, Double KL (2019) Levels of glial cell line-derived neurotrophic factor are decreased, but fibroblast growth factor 2 and cerebral dopamine neurotrophic factor are increased in the hippocampus in Parkinson’s disease. Brain Pathol 29(6):813–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wong CH, Li D, Wang N, Gruber J, Lo AW, Conti RM (2023) The estimated annual financial impact of gene therapy in the United States. Gene Ther 30(10–11):761–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang GL, Wang LH, Liu XY, Zhang YX, Hu MY, Liu L, Fang YY, Mu Y, Zhao Y, Huang SH, Liu T, Wang XJ (2018) Cerebral Dopamine Neurotrophic Factor (CDNF) has neuroprotective effects against cerebral ischemia that may occur through the endoplasmic reticulum stress pathway. Int J Mol Sci 19(7):1905

  57. Zheng JS, Tang LL, Zheng SS, Zhan RY, Zhou YQ, Goudreau J, Kaufman D, Chen AF (2005) Delayed gene therapy of glial cell line-derived neurotrophic factor is efficacious in a rat model of Parkinson’s disease. Brain Res Mol Brain Res 134(1):155–161

    Article  CAS  PubMed  Google Scholar 

  58. Zhou K, Han J, Wang Y, Zhang Y, Zhu C (2022) Routes of administration for adeno-associated viruses carrying gene therapies for brain diseases. Front Mol Neurosci 15:988914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

J.G.: Drafting the manuscript, interpretation of data, editing, and revision.

N.P.: Drafting the manuscript, interpretation of data, editing, and revision.

C.B.: Drafting the manuscript, interpretation of data, editing, and revision.

M.S.P.: Conceptualization, supervision, drafting the manuscript, interpretation of data, editing, and revision.

Corresponding author

Correspondence to Mayur S. Parmar.

Ethics declarations

Ethical approval

No ethical approval is required for this article as no datasets were generated or analyzed during the current study.

Consent to participate

This does not apply to this article, as no datasets were generated or analyzed during the current study.

Written consent for publication

Not applicable.

Conflicts of interest/Competing interests

The authors declare no competing interests.

Informed consent

This literature review did not involve any original research with human participants or animals, thus informed consent was not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grote, J., Patel, N., Bates, C. et al. From lab bench to hope: a review of gene therapies in clinical trials for Parkinson’s disease and challenges. Neurol Sci (2024). https://doi.org/10.1007/s10072-024-07599-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10072-024-07599-1

Keywords

Navigation