Skip to main content
Log in

The presence and clinical significance of autoantibodies in amyotrophic lateral sclerosis: a narrative review

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS) is a debilitating and rapidly fatal neurodegenerative disease, which is characterized by the selective loss of the upper and lower motor neurons. The pathogenesis of ALS remains to be elucidated and has been connected to genetic, environmental and immune conditions. Evidence from clinical and experimental studies has suggested that the immune system played an important role in ALS pathophysiology. Autoantibodies are essential components of the immune system. Several autoantibodies directed at antigens associated with ALS pathogenesis have been identified in the serum and/or cerebrospinal fluid of ALS patients. The aim of this review is to summarize the presence and clinical significance of autoantibodies in ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Goutman SA, Hardiman O, Al-Chalabi A, Chió A, Savelieff MG, Kiernan MC, Feldman EL (2022) Emerging insights into the complex genetics and pathophysiology of amyotrophic lateral sclerosis. Lancet Neurol 21(5):465–479. https://doi.org/10.1016/S1474-4422(21)00414-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Turner MR, Hardiman O, Benatar M, Brooks BR, Chio A, de Carvalho M, Ince PG, Lin C, Miller RG, Mitsumoto H, Nicholson G, Ravits J, Shaw PJ, Swash M, Talbot K, Traynor BJ, Van den Berg LH, Veldink JH, Vucic S, Kiernan MC (2013) Controversies and priorities in amyotrophic lateral sclerosis. Lancet Neurol 12(3):310–322. https://doi.org/10.1016/S1474-4422(13)70036-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Greco V, Longone P, Spalloni A, Pieroni L, Urbani A (2019) Crosstalk between oxidative stress and mitochondrial damage: focus on amyotrophic lateral sclerosis. Adv Exp Med Biol 1158:71–82. https://doi.org/10.1007/978-981-13-8367-0_5

    Article  CAS  PubMed  Google Scholar 

  4. Valko K, Ciesla L (2019) Amyotrophic lateral sclerosis. Prog Med Chem 58:63–117. https://doi.org/10.1016/bs.pmch.2018.12.001

    Article  PubMed  Google Scholar 

  5. Beers DR, Appel SH (2019) Immune dysregulation in amyotrophic lateral sclerosis: mechanisms and emerging therapies. Lancet Neurol 18(2):211–220. https://doi.org/10.1016/S1474-4422(18)30394-6

    Article  CAS  PubMed  Google Scholar 

  6. Yu W, He J, Cai X, Yu Z, Zou Z, Fan D (2022) Neuroimmune crosstalk between the peripheral and the central immune system in amyotrophic lateral sclerosis. Front Aging Neurosci 14:890958. https://doi.org/10.3389/fnagi.2022.890958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sabatino JJ Jr, Pröbstel AK, Zamvil SS (2019) B cells in autoimmune and neurodegenerative central nervous system diseases. Nat Rev Neurosci 20(12):728–745. https://doi.org/10.1038/s41583-019-0233-2

    Article  CAS  PubMed  Google Scholar 

  8. Kollewe K, Wurster U, Sinzenich T, Körner S, Dengler R, Mohammadi B, Petri S (2015) Anti-ganglioside antibodies in amyotrophic lateral sclerosis revisited. PLoS One 10(4):e0125339. https://doi.org/10.1371/journal.pone.0125339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lyon MS, Wosiski-Kuhn M, Gillespie R, Caress J, Milligan C (2019) Inflammation, Immunity, and amyotrophic lateral sclerosis: I. Etiology and pathology. Muscle Nerve 59(1):10–22. https://doi.org/10.1002/mus.26289

    Article  PubMed  Google Scholar 

  10. Yamanaka K, Komine O (2018) The multi-dimensional roles of astrocytes in ALS. Neurosci Res 126:31–38. https://doi.org/10.1016/j.neures.2017.09.011

    Article  CAS  PubMed  Google Scholar 

  11. Hovden H, Frederiksen JL, Pedersen SW (2013) Immune system alterations in amyotrophic lateral sclerosis. Acta Neurol Scand 128(5):287–296. https://doi.org/10.1111/ane.12125

    Article  CAS  PubMed  Google Scholar 

  12. Sta M, Sylva-Steenland RM, Casula M, de Jong JM, Troost D, Aronica E, Baas F (2011) Innate and adaptive immunity in amyotrophic lateral sclerosis: evidence of complement activation. Neurobiol Dis 42(3):211–220. https://doi.org/10.1016/j.nbd.2011.01.002

    Article  CAS  PubMed  Google Scholar 

  13. Obál I, Nógrádi B, Meszlényi V, Patai R, Ricken G, Kovacs GG, Tripolszki K, Széll M, Siklós L, Engelhardt JI (2019) Experimental motor neuron disease induced in mice with long-term repeated intraperitoneal injections of serum from ALS patients. Int J Mol Sci 20(10):2573. https://doi.org/10.3390/ijms20102573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yildiz O, Schroth J, Tree T, Turner MR, Shaw PJ, Henson SM, Malaspina A (2022) Senescent-like blood lymphocytes and disease progression in amyotrophic lateral sclerosis. Neurol Neuroimmunol Neuroinflamm 10(1):e200042. https://doi.org/10.1212/NXI.0000000000200042

    Article  PubMed  PubMed Central  Google Scholar 

  15. Stich O, Kleer B, Rauer S (2007) Absence of paraneoplastic antineuronal antibodies in sera of 145 patients with motor neuron disease. J Neurol Neurosurg Psychiatry 78(8):883–885. https://doi.org/10.1136/jnnp.2006.097774

    Article  PubMed  PubMed Central  Google Scholar 

  16. Al-Bustani N, Simonson W, Marshall DA, Vetrovs J, Wener MH, Weiss MD, Wang LH (2015) Utility of paraneoplastic antibody testing in the diagnosis of motor neuron disease. J Clin Neuromuscul Dis 17(2):63–68. https://doi.org/10.1097/CND.0000000000000080

    Article  PubMed  Google Scholar 

  17. Donaldson R, Li J, Li Y (2016) Clinical significance of cation channel antibodies in motor neuron disease. Muscle Nerve 54(2):228–231. https://doi.org/10.1002/mus.25046

    Article  CAS  PubMed  Google Scholar 

  18. Nwosu VK, Royer JA, Stickler DE (2010) Voltage gated potassium channel antibodies in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 11(4):392–394. https://doi.org/10.3109/17482960903452283

    Article  PubMed  Google Scholar 

  19. Godani M, Zoccarato M, Beronio A, Zuliani L, Benedetti L, Giometto B, Del Sette M, Raggio E, Baldi R, Vincent A (2017) Voltage-gated potassium channel antibodies in slow-progression motor neuron disease. Neurodegener Dis 17(1):59–62. https://doi.org/10.1159/000447715

    Article  CAS  PubMed  Google Scholar 

  20. Yang Z, He L, Ren M, Lu Y, Meng H, Yin D, Chen S, Zhou Q (2022) Paraneoplastic amyotrophic lateral sclerosis: case series and literature review. Brain Sci 12(8):1053. https://doi.org/10.3390/brainsci12081053

    Article  PubMed  PubMed Central  Google Scholar 

  21. Couratier P, Yi FH, Preud'homme JL, Clavelou P, White A, Sindou P, Vallat JM, Jauberteau MO (1998) Serum autoantibodies to neurofilament proteins in sporadic amyotrophic lateral sclerosis. J Neurol Sci 154(2):137–145. https://doi.org/10.1016/s0022-510x(97)00219-0

    Article  CAS  PubMed  Google Scholar 

  22. Fialová L, Svarcová J, Bartos A, Ridzon P, Malbohan I, Keller O, Rusina R (2010) Cerebrospinal fluid and serum antibodies against neurofilaments in patients with amyotrophic lateral sclerosis. Eur J Neurol 17(4):562–566. https://doi.org/10.1111/j.1468-1331.2009.02853.x

    Article  PubMed  Google Scholar 

  23. Puentes F, Topping J, Kuhle J, van der Star BJ, Douiri A, Giovannoni G, Baker D, Amor S, Malaspina A (2014) Immune reactivity to neurofilament proteins in the clinical staging of amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 85(3):274–278. https://doi.org/10.1136/jnnp-2013-305494

    Article  PubMed  Google Scholar 

  24. Puentes F, Lombardi V, Lu CH, Yildiz O, Fratta P, Isaacs A, Bobeva Y, Wuu J, ALS Biomarker Consortium, CReATe Consortium, Benatar M, Malaspina A (2021) Humoral response to neurofilaments and dipeptide repeats in ALS progression. Ann Clin Transl Neurol 8(9):1831–1844. https://doi.org/10.1002/acn3.51428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sista SR, Crum B, Aboseif A, Devine MF, Zekeridou A, Hammami MB, Rezk MM, Truffert A, Lalive PH, Kunchok A, McKeon A, Dubey D (2022) Motor-neuron-disease-like phenotype associated with IgLON5 disease. J Neurol 269(11):6139–6144. https://doi.org/10.1007/s00415-022-11262-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tao QQ, Wei Q, Song SJ, Yin XZ (2018) Motor neuron disease-like phenotype associated with anti-IgLON5 disease. CNS Neurosci Ther 24(12):1305–1308. https://doi.org/10.1111/cns.13038

    Article  PubMed  PubMed Central  Google Scholar 

  27. Werner J, Jelcic I, Schwarz EI, Probst-Müller E, Nilsson J, Schwizer B, Bloch KE, Lutterotti A, Jung HH, Schreiner B (2021) Anti-IgLON5 Disease: A New Bulbar-Onset Motor Neuron Mimic Syndrome. Neurol Neuroimmunol Neuroinflamm 8(2):e962. https://doi.org/10.1212/NXI.0000000000000962

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gadoth A, Nefussy B, Bleiberg M, Klein T, Artman I, Drory VE (2015) Transglutaminase 6 Antibodies in the Serum of Patients With Amyotrophic Lateral Sclerosis. JAMA Neurol 72(6):676–681. https://doi.org/10.1001/jamaneurol.2015.48

    Article  PubMed  Google Scholar 

  29. Çoban A, Ulusoy C, Giriş M, Turan S, Türkoğlu R, Tüzün E, Idrisoğlu HA (2013) Serum anti-neuronal antibodies in amyotrophic lateral sclerosis. Int J Neurosci 123(8):557–562. https://doi.org/10.3109/00207454.2013.782025

    Article  CAS  PubMed  Google Scholar 

  30. Pestronk A, Adams RN, Clawson L, Cornblath D, Kuncl RW, Griffin D, Drachman DB (1988) Serum antibodies to GM1 ganglioside in amyotrophic lateral sclerosis. Neurology 38(9):1457–1461. https://doi.org/10.1212/wnl.38.9.1457

    Article  CAS  PubMed  Google Scholar 

  31. Shy ME, Evans VA, Lublin FD, Knobler RL, Heiman-Patterson T, Tahmoush AJ, Parry G, Schick P, DeRyk TG (1989) Antibodies to GM1 and GD1b in patients with motor neuron disease without plasma cell dyscrasia. Ann Neurol 25(5):511–513. https://doi.org/10.1002/ana.410250517

    Article  CAS  PubMed  Google Scholar 

  32. Adams D, Kuntzer T, Burger D, Chofflon M, Magistris MR, Regli F, Steck AJ (1991) Predictive value of anti-GM1 ganglioside antibodies in neuromuscular diseases: a study of 180 sera. J Neuroimmunol 32(3):223–230. https://doi.org/10.1016/0165-5728(91)90192-a

    Article  CAS  PubMed  Google Scholar 

  33. Lamb NL, Patten BM (1991) Clinical correlations of anti-GM1 antibodies in amyotrophic lateral sclerosis and neuropathies. Muscle Nerve 14(10):1021–1027. https://doi.org/10.1002/mus.880141014

    Article  CAS  PubMed  Google Scholar 

  34. Annunziata P, Maimone D, Guazzi GC (1995) Association of polyclonal anti-GM1 IgM and anti-neurofilament antibodies with CSF oligoclonal bands in a young with amyotrophic lateral sclerosis. Acta Neurol Scand 92(5):387–393. https://doi.org/10.1111/j.1600-0404.1995.tb00152.x

    Article  CAS  PubMed  Google Scholar 

  35. Haggiag S, Steiner-Birmanns B, Wirguin I, Sicsic C, Brenner T, Steiner I (2004) Seroconversion of anti-GM1 antibodies in patients with amyotrophic lateral sclerosis. Neurology 63(4):755–756. https://doi.org/10.1212/01.wnl.0000134709.82830.12

    Article  CAS  PubMed  Google Scholar 

  36. Taylor BV, Gross L, Windebank AJ (1996) The sensitivity and specificity of anti-GM1 antibody testing. Neurology 47(4):951–955. https://doi.org/10.1212/wnl.47.4.951

    Article  CAS  PubMed  Google Scholar 

  37. Pestronk A, Adams RN, Cornblath D, Kuncl RW, Drachman DB, Clawson L (1989) Patterns of serum IgM antibodies to GM1 and GD1a gangliosides in amyotrophic lateral sclerosis. Ann Neurol 25(1):98–102. https://doi.org/10.1002/ana.410250118

    Article  CAS  PubMed  Google Scholar 

  38. Niebroj-Dobosz I, Jamrozik Z, Janik P, Hausmanowa-Petrusewicz I, Kwieciński H (1999) Anti-neural antibodies in serum and cerebrospinal fluid of amyotrophic lateral sclerosis (ALS) patients. Acta Neurol Scand 100(4):238–243. https://doi.org/10.1111/j.1600-0404.1999.tb00387.x

    Article  CAS  PubMed  Google Scholar 

  39. Mizutani K, Oka N, Kusunoki S, Kaji R, Kanda M, Akiguchi I, Shibasaki H (2003) Amyotrophic lateral sclerosis with IgM antibody against gangliosides GM2 and GD2. Intern Med (Tokyo, Japan) 42(3):277–280. https://doi.org/10.2169/internalmedicine.42.277

    Article  Google Scholar 

  40. Yamazaki T, Suzuki M, Irie T, Watanabe T, Mikami H, Ono S (2008) Amyotrophic lateral sclerosis associated with IgG anti-GalNAc-GD1a antibodies. Clin Neurol Neurosurg 110(7):722–724. https://doi.org/10.1016/j.clineuro.2008.03.010

    Article  PubMed  Google Scholar 

  41. Repajic M, Husain S, Ghassemi A, Kondradzhyan M, Liu A (2021) Amyotrophic lateral sclerosis in a patient who recovered from Miller Fisher Syndrome: The role of GQ1b antibody revisited. Brain, Behavior, Immun-Health 13:100231. https://doi.org/10.1016/j.bbih.2021.100231

    Article  CAS  Google Scholar 

  42. Ben Younes-Chennoufi A, Rozier A, Dib M, Bouche P, Lacomblez L, Mombo N, Ben Simon G, Yu RK, Baumann N, Meininger V (1995) Anti-sulfoglucuronyl paragloboside IgM antibodies in amyotrophic lateral sclerosis. J Neuroimmunol 57(1-2):111–115. https://doi.org/10.1016/0165-5728(94)00169-o

    Article  CAS  PubMed  Google Scholar 

  43. Ikeda J, Kohriyama T, Nakamura S (2000) Elevation of serum soluble E-selectin and antisulfoglucuronyl paragloboside antibodies in amyotrophic lateral sclerosis. Eur J Neurol 7(5):541–547. https://doi.org/10.1046/j.1468-1331.2000.t01-1-00114.x

    Article  CAS  PubMed  Google Scholar 

  44. Li D, Usuki S, Quarles B, Rivner MH, Ariga T, Yu RK (2016) Anti-sulfoglucuronosyl paragloboside antibody: a potential serologic marker of amyotrophic lateral sclerosis. ASN Neuro 8(5):1759091416669619. https://doi.org/10.1177/1759091416669619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu S, Zhang YM, Zhao HD, Liu TT, Shi JQ (2023) Anti-neurofascin 186 antibody in amyotrophic lateral sclerosis: a case report. Acta Neurol Belg 123(2):703–704. https://doi.org/10.1007/s13760-022-01989-y

    Article  PubMed  Google Scholar 

  46. Mittag TW, Caroscio J (1980) False-positive immunoassay for acetylcholine-receptor antibody in amyotrophic lateral sclerosis. N Engl J Med 302(15):868. https://doi.org/10.1056/NEJM198004103021520

    Article  CAS  PubMed  Google Scholar 

  47. Ashizawa T (1986) False positive anti-acetylcholine receptor antibodies in motorneurone disease. Lancet (London, England) 1(8492):1272. https://doi.org/10.1016/s0140-6736(86)91408-x

    Article  CAS  PubMed  Google Scholar 

  48. Rivner MH, Liu S, Quarles B, Fleenor B, Shen C, Pan J, Mei L (2017) Agrin and low-density lipoprotein-related receptor protein 4 antibodies in amyotrophic lateral sclerosis patients. Muscle Nerve 55(3):430–432. https://doi.org/10.1002/mus.25438

    Article  CAS  PubMed  Google Scholar 

  49. Tzartos JS, Zisimopoulou P, Rentzos M, Karandreas N, Zouvelou V, Evangelakou P, Tsonis A, Thomaidis T, Lauria G, Andreetta F, Mantegazza R, Tzartos SJ (2014) LRP4 antibodies in serum and CSF from amyotrophic lateral sclerosis patients. Ann Clin Transl Neurol 1(2):80–87. https://doi.org/10.1002/acn3.26

    Article  CAS  PubMed  Google Scholar 

  50. Takahashi H, Noto YI, Makita N, Kushimura-Okada Y, Ishii R, Tanaka A, Ohara T, Nakane S, Higuchi O, Nakagawa M, Mizuno T (2016) Myasthenic symptoms in anti-low-density lipoprotein receptor-related protein 4 antibody-seropositive amyotrophic lateral sclerosis: two case reports. BMC Neurol 16(1):229. https://doi.org/10.1186/s12883-016-0758-1

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tüzün E, Gezen-Ak D, Tzartos J, Dursun E, Giriş M, Zisimopoulou P, Karagiorgou K, Yetimler B, Küçükali Cİ, İdrisoğlu HA (2018) LRP4 antibody positive amyotrophic lateral sclerosis patients display neuropil-reactive IgG and enhanced serum complement levels. Immunol Lett 203:54–56. https://doi.org/10.1016/j.imlet.2018.09.011

    Article  CAS  PubMed  Google Scholar 

  52. Lei L, Shen XM, Wang SY, Lu Y, Wang SB, Chen H, Liu Z, Ouyang YS, Duo JY, Da YW, Chen ZG (2019) Presence of antibodies against low-density lipoprotein receptor-related protein 4 and impairment of neuromuscular junction in a Chinese cohort of amyotrophic lateral sclerosis. Chin Med J 132(12):1487–1489. https://doi.org/10.1097/CM9.0000000000000284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liewluck T (2017) Anti-cytosolic 5'-nucleotidase 1A (cN1A) autoantibodies in motor neuron diseases. Neurology 89(19):2017–2018. https://doi.org/10.1212/WNL.0000000000004610

    Article  CAS  PubMed  Google Scholar 

  54. Yi FH, Lautrette C, Vermot-Desroches C, Bordessoule D, Couratier P, Wijdenes J, Preud'homme JL, Jauberteau MO (2000) In vitro induction of neuronal apoptosis by anti-Fas antibody-containing sera from amyotrophic lateral sclerosis patients. J Neuroimmunol 109(2):211–220. https://doi.org/10.1016/s0165-5728(00)00288-5

    Article  CAS  PubMed  Google Scholar 

  55. Sengun IS, Appel SH (2003) Serum anti-Fas antibody levels in amyotrophic lateral sclerosis. J Neuroimmunol 142(1-2):137–140. https://doi.org/10.1016/s0165-5728(03)00263-7

    Article  CAS  PubMed  Google Scholar 

  56. Iłzecka J, Stelmasiak Z (2003) Anti-annexin V antibodies in the cerebrospinal fluid and serum of patients with amyotrophic lateral sclerosis. Neurol Sci 24(4):273–274. https://doi.org/10.1007/s10072-003-0154-7

    Article  PubMed  Google Scholar 

  57. Hwang CS, Liu GT, Chang MD, Liao IL, Chang HT (2013) Elevated serum autoantibody against high mobility group box 1 as a potent surrogate biomarker for amyotrophic lateral sclerosis. Neurobiol Dis 58:13–18. https://doi.org/10.1016/j.nbd.2013.04.013

    Article  CAS  PubMed  Google Scholar 

  58. Roman AY, Kovrazhkina EA, Razinskaya OD, Kukharsky MS, Maltsev AV, Ovchinnikov RK, Lytkina OA, Smirnov AP, Moskovtsev AA, Borodina YV, Surguchov AP, Ustyugov AA, Ninkina NN, Skvortsova VI (2017) Detection of autoantibodies to potentially amyloidogenic protein, gamma-synuclein, in the serum of patients with amyotrophic lateral sclerosis and cerebral circulatory disorders. Dokl Biochem Biophys 472(1):64–67. https://doi.org/10.1134/S1607672917010197

    Article  CAS  PubMed  Google Scholar 

  59. Sugimoto K, Hiwasa T, Shibuya K, Hirano S, Beppu M, Isose S, Arai K, Takiguchi M, Kuwabara S, Mori M (2018) Novel autoantibodies against the proteasome subunit PSMA7 in amyotrophic lateral sclerosis. J Neuroimmunol 325:54–60. https://doi.org/10.1016/j.jneuroim.2018.09.013

    Article  CAS  PubMed  Google Scholar 

  60. Sugimoto K, Mori M, Liu J, Shibuya K, Isose S, Koide M, Hiwasa T, Kuwabara S (2021) Novel serum autoantibodies against ß-actin (ACTB) in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 22(5-6):388–394. https://doi.org/10.1080/21678421.2021.1885448

    Article  CAS  PubMed  Google Scholar 

  61. Nielsen AK, Folke J, Owczarek S, Svenstrup K, Winge K, Pakkenberg B, Aznar S, Brudek T (2020) TDP-43-specific autoantibody decline in patients with amyotrophic lateral sclerosis. Neurol Neuroimmunol Neuroinflamm 8(2):e937. https://doi.org/10.1212/NXI.0000000000000937

    Article  PubMed  PubMed Central  Google Scholar 

  62. Conti E, Sala G, Diamanti S, Casati M, Lunetta C, Gerardi F, Tarlarini C, Mosca L, Riva N, Falzone Y, Filippi M, Appollonio I, Ferrarese C, Tremolizzo L (2021) Serum naturally occurring anti-TDP-43 auto-antibodies are increased in amyotrophic lateral sclerosis. Sci Rep 11(1):1978. https://doi.org/10.1038/s41598-021-81599-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Simula ER, Arru G, Zarbo IR, Solla P, Sechi LA (2021) TDP-43 and HERV-K envelope-specific immunogenic epitopes are recognized in ALS patients. Viruses 13(11):2301. https://doi.org/10.3390/v13112301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ramachandran S, Grozdanov V, Leins B, Kandler K, Witzel S, Mulaw M, Ludolph AC, Weishaupt JH, Danzer KM (2023) Low T-cell reactivity to TDP-43 peptides in ALS. Front Immunol 14:1193507. https://doi.org/10.3389/fimmu.2023.1193507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Arru G, Mameli G, Deiana GA, Rassu AL, Piredda R, Sechi E, Caggiu E, Bo M, Nako E, Urso D, Mariotto S, Ferrari S, Zanusso G, Monaco S, Sechi G, Sechi LA (2018) Humoral immunity response to human endogenous retroviruses K/W differentiates between amyotrophic lateral sclerosis and other neurological diseases. Eur J Neurol 25(8):1076–1e84. https://doi.org/10.1111/ene.13648

    Article  CAS  PubMed  Google Scholar 

  66. Arru G, Galleri G, Deiana GA, Zarbo IR, Sechi E, Bo M, Cadoni MPL, Corda DG, Frau C, Simula ER, Manca MA, Galistu F, Solla P, Manetti R, Sechi GP, Sechi LA (2021) HERV-K modulates the immune response in ALS patients. Microorganisms 9(8):1784. https://doi.org/10.3390/microorganisms9081784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Garcia-Montojo M, Simula ER, Fathi S, McMahan C, Ghosal A, Berry JD, Cudkowicz M, Elkahloun A, Johnson K, Norato G, Jensen P, James T, Sechi LA, Nath A (2022) Antibody response to HML-2 may be protective in amyotrophic lateral sclerosis. Ann Neurol 92(5):782–792. https://doi.org/10.1002/ana.26466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Graus F, Vogrig A, Muñiz-Castrillo S, Antoine JG, Desestret V, Dubey D, Giometto B, Irani SR, Joubert B, Leypoldt F, McKeon A, Prüss H, Psimaras D, Thomas L, Titulaer MJ, Vedeler CA, Verschuuren JJ, Dalmau J, Honnorat J (2021) Updated diagnostic criteria for paraneoplastic neurologic syndromes. Neurol Neuroimmunol Neuroinflamm 8(4):e1014. https://doi.org/10.1212/NXI.0000000000001014

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lu CH, Macdonald-Wallis C, Gray E, Pearce N, Petzold A, Norgren N, Giovannoni G, Fratta P, Sidle K, Fish M, Orrell R, Howard R, Talbot K, Greensmith L, Kuhle J, Turner MR, Malaspina A (2015) Neurofilament light chain: a prognostic biomarker in amyotrophic lateral sclerosis. Neurology 84(22):2247–2257. https://doi.org/10.1212/WNL.0000000000001642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Landa J, Serafim AB, Gaig C, Saiz A, Koneczny I, Hoftberger R, Santamaria J, Dalmau J, Graus F, Sabater L (2023) Patients' IgLON5 autoantibodies interfere with IgLON5-protein interactions. Front Immunol 14:1151574. https://doi.org/10.3389/fimmu.2023.1151574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hashimoto T, Yamada M, Maekawa S, Nakashima T, Miyata S (2008) IgLON cell adhesion molecule Kilon is a crucial modulator for synapse number in hippocampal neurons. Brain Res 1224:1–11. https://doi.org/10.1016/j.brainres.2008.05.069

    Article  CAS  PubMed  Google Scholar 

  72. Hashimoto T, Maekawa S, Miyata S (2009) IgLON cell adhesion molecules regulate synaptogenesis in hippocampal neurons. Cell Biochem Funct 27(7):496–498. https://doi.org/10.1002/cbf.1600

    Article  CAS  PubMed  Google Scholar 

  73. Sabater L, Gaig C, Gelpi E, Bataller L, Lewerenz J, Torres-Vega E, Contreras A, Giometto B, Compta Y, Embid C, Vilaseca I, Iranzo A, Santamaría J, Dalmau J, Graus F (2014) A novel non-rapid-eye movement and rapid-eye-movement parasomnia with sleep breathing disorder associated with antibodies to IgLON5: a case series, characterisation of the antigen, and post-mortem study. Lancet Neurol 13(6):575–586. https://doi.org/10.1016/S1474-4422(14)70051-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gelpi E, Höftberger R, Graus F, Ling H, Holton JL, Dawson T, Popovic M, Pretnar-Oblak J, Högl B, Schmutzhard E, Poewe W, Ricken G, Santamaria J, Dalmau J, Budka H, Revesz T, Kovacs GG (2016) Neuropathological criteria of anti-IgLON5-related tauopathy. Acta Neuropathol 132(4):531–543. https://doi.org/10.1007/s00401-016-1591-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Liu YT, Tang BS, Lan W, Song NN, Huang Y, Zhang L, Guan WJ, Shi YT, Shen L, Jiang H, Guo JF, Xia K, Ding YQ, Wang JL (2013) Distribution of transglutaminase 6 in the central nervous system of adult mice. Anat Rec(Hoboken, N.J. : 2007) 296(10):1576–1587. https://doi.org/10.1002/ar.22741

    Article  CAS  Google Scholar 

  76. Hadjivassiliou M, Aeschlimann P, Strigun A, Sanders DS, Woodroofe N, Aeschlimann D (2008) Autoantibodies in gluten ataxia recognize a novel neuronal transglutaminase. Ann Neurol 64(3):332–343. https://doi.org/10.1002/ana.21450

    Article  CAS  PubMed  Google Scholar 

  77. Turner MR, Chohan G, Quaghebeur G, Greenhall RC, Hadjivassiliou M, Talbot K (2007) A case of celiac disease mimicking amyotrophic lateral sclerosis. Nat Clin Pract Neurol 3(10):581–584. https://doi.org/10.1038/ncpneuro0631

    Article  PubMed  Google Scholar 

  78. Brown KJ, Jewells V, Herfarth H, Castillo M (2010) White matter lesions suggestive of amyotrophic lateral sclerosis attributed to celiac disease. AJNR Am J Neuroradiol 31(5):880–881. https://doi.org/10.3174/ajnr.A1826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bersano E, Stecco A, D'Alfonso S, Corrado L, Sarnelli MF, Solara V, Cantello R, Mazzini L (2015) Coeliac disease mimicking Amyotrophic Lateral Sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 16(3-4):277–279. https://doi.org/10.3109/21678421.2014.980614

    Article  PubMed  Google Scholar 

  80. Ham H, Lee BI, Oh HJ, Park SH, Kim JS, Park JM, Cho YS, Choi MG (2017) A case of celiac disease with neurologic manifestations misdiagnosed as amyotrophic lateral sclerosis. Intest Res 15(4):540–542. https://doi.org/10.5217/ir.2017.15.4.540

    Article  PubMed  PubMed Central  Google Scholar 

  81. Svennerholm L, Boström K, Jungbjer B, Olsson L (1994) Membrane lipids of adult human brain: lipid composition of frontal and temporal lobe in subjects of age 20 to 100 years. J Neurochem 63(5):1802–1811. https://doi.org/10.1046/j.1471-4159.1994.63051802.x

    Article  CAS  PubMed  Google Scholar 

  82. Sipione S, Monyror J, Galleguillos D, Steinberg N, Kadam V (2020) Gangliosides in the brain: physiology, pathophysiology and therapeutic applications. Front Neurosci 14:572965. https://doi.org/10.3389/fnins.2020.572965

    Article  PubMed  PubMed Central  Google Scholar 

  83. Agrawal I, Lim YS, Ng SY, Ling SC (2022) Deciphering lipid dysregulation in ALS: from mechanisms to translational medicine. Transl Neurodegener 11(1):48. https://doi.org/10.1186/s40035-022-00322-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rapport MM, Donnenfeld H, Brunner W, Hungund B, Bartfeld H (1985) Ganglioside patterns in amyotrophic lateral sclerosis brain regions. Ann Neurol 18(1):60–67. https://doi.org/10.1002/ana.410180111

    Article  CAS  PubMed  Google Scholar 

  85. Dawson G, Stefansson K (1984) Gangliosides of human spinal cord: aberrant composition of cords from patients with amyotrophic lateral sclerosis. J Neurosci Res 12(2-3):213–220. https://doi.org/10.1002/jnr.490120209

    Article  CAS  PubMed  Google Scholar 

  86. Dodge JC, Treleaven CM, Pacheco J, Cooper S, Bao C, Abraham M, Cromwell M, Sardi SP, Chuang WL, Sidman RL, Cheng SH, Shihabuddin LS (2015) Glycosphingolipids are modulators of disease pathogenesis in amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 112(26):8100–8105. https://doi.org/10.1073/pnas.1508767112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bradley WG, Hedlund W, Cooper C, Desousa GJ, Gabbai A, Mora JS, Munsat TL, Scheife R (1984) A double-blind controlled trial of bovine brain gangliosides in amyotrophic lateral sclerosis. Neurology 34(8):1079–1082. https://doi.org/10.1212/wnl.34.8.1079

    Article  CAS  PubMed  Google Scholar 

  88. Harrington H, Hallett M, Tyler HR (1984) Ganglioside therapy for amyotrophic lateral sclerosis: a double-blind controlled trial. Neurology 34(8):1083–1085. https://doi.org/10.1212/wnl.34.8.1083

    Article  CAS  PubMed  Google Scholar 

  89. Bradley WG (1984) Double-blind controlled trial of purified brain gangliosides in amyotrophic lateral sclerosis and experience with peripheral neuropathies. Adv Exp Med Biol 174:565–573. https://doi.org/10.1007/978-1-4684-1200-0_47

    Article  CAS  PubMed  Google Scholar 

  90. Hallett M, Harrington H, Tyler HR, Flood T, Slater N (1984) Trials of ganglioside therapy for amyotrophic lateral sclerosis and diabetic neuropathy. Adv Exp Med Biol 174:575–579. https://doi.org/10.1007/978-1-4684-1200-0_48

    Article  CAS  PubMed  Google Scholar 

  91. Kira JI, Yamasaki R, Ogata H (2019) Anti-neurofascin autoantibody and demyelination. Neurochem Int 130:104360. https://doi.org/10.1016/j.neuint.2018.12.011

    Article  CAS  PubMed  Google Scholar 

  92. Verma S, Khurana S, Vats A, Sahu B, Ganguly NK, Chakraborti P, Gourie-Devi M, Taneja V (2022) Neuromuscular junction dysfunction in amyotrophic lateral sclerosis. Mol Neurobiol 59(3):1502–1527. https://doi.org/10.1007/s12035-021-02658-6

    Article  CAS  PubMed  Google Scholar 

  93. McIntosh J, Mekrouda I, Dashti M, Giuraniuc CV, Banks RW, Miles GB, Bewick GS (2023) Development of abnormalities at the neuromuscular junction in the SOD1-G93A mouse model of ALS: dysfunction then disruption of postsynaptic structure precede overt motor symptoms. Front Mol Neurosci 16:1169075. https://doi.org/10.3389/fnmol.2023.1169075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Okuyama Y, Mizuno T, Inoue H, Kimoto K (1997) Amyotrophic lateral sclerosis with anti-acetylcholine receptor antibody. Internal Med (Tokyo, Japan) 36(4):312–315. https://doi.org/10.2169/internalmedicine.36.312

    Article  CAS  Google Scholar 

  95. Restivo DA, Bianconi C, Ravenni R, De Grandis D (2000) ALS and myasthenia: An unusual association in a patient treated with riluzole. Muscle Nerve 23(2):294–295. https://doi.org/10.1002/(sici)1097-4598(200002)23:2<294::aid-mus25>3.0.co;2-g

    Article  CAS  PubMed  Google Scholar 

  96. Tai H, Cui L, Guan Y, Liu M, Li X, Huang Y, Yuan J, Shen D, Li D, Zhai F (2017) Amyotrophic lateral sclerosis and myasthenia gravis overlap syndrome: a review of two cases and the associated literature. Front Neurol 8:218. https://doi.org/10.3389/fneur.2017.00218

    Article  PubMed  PubMed Central  Google Scholar 

  97. Ohnari K, Okada K, Higuchi O, Matsuo H, Adachi H (2018) Late-onset myasthenia gravis accompanied by amyotrophic lateral sclerosis with antibodies against the acetylcholine receptor and low-density lipoprotein receptor-related protein 4. Internal Med (Tokyo, Japan) 57(20):3021–3024. https://doi.org/10.2169/internalmedicine.0966-18

    Article  Google Scholar 

  98. Hodzic R, Piric N, Zukic S, Cickusic A (2021) Coexistence of myasthenia gravis and amyotrophic lateral sclerosis in a Bosnian male: an unusual clinical presentation. Acta Mycol 40(1):66–68. https://doi.org/10.36185/2532-1900-044

    Article  Google Scholar 

  99. Sun B, Wang H, Li Y, He Z, Huang X (2023) Myasthenia gravis with amyotrophic lateral sclerosis with positive anti-Hu antibody: a rare co-existence. Acta Neurol Belg 123(1):315–317. https://doi.org/10.1007/s13760-022-01894-4

    Article  PubMed  Google Scholar 

  100. Del Mar Amador M, Vandenberghe N, Berhoune N, Camdessanché JP, Gronier S, Delmont E, Desnuelle C, Cintas P, Pittion S, Louis S, Demeret S, Lenglet T, Meininger V, Salachas F, Pradat PF, Bruneteau G (2016) Unusual association of amyotrophic lateral sclerosis and myasthenia gravis: A dysregulation of the adaptive immune system? Neuromuscul Disord 26(6):342–346. https://doi.org/10.1016/j.nmd.2016.03.004

    Article  PubMed  Google Scholar 

  101. de Pasqua S, Cavallieri F, D'Angelo R, Salvi F, Fini N, D'Alessandro R, Rinaldi R, Fasano A, Mandrioli J (2017) Amyotrophic lateral sclerosis and myasthenia gravis: association or chance occurrence? Neurol Sci 38(3):441–444. https://doi.org/10.1007/s10072-016-2787-3

    Article  PubMed  Google Scholar 

  102. Cui C, Longinetti E, Larsson H, Andersson J, Pawitan Y, Piehl F, Fang F (2021) Associations between autoimmune diseases and amyotrophic lateral sclerosis: a register-based study. Amyotroph Lateral Scler Frontotemporal Degener 22(3-4):211–219. https://doi.org/10.1080/21678421.2020.1861022

    Article  CAS  PubMed  Google Scholar 

  103. Li L, Xiong WC, Mei L (2018) Neuromuscular junction formation, aging, and disorders. Annu Rev Physiol 80:159–188. https://doi.org/10.1146/annurev-physiol-022516-034255

    Article  CAS  PubMed  Google Scholar 

  104. Larman HB, Salajegheh M, Nazareno R, Lam T, Sauld J, Steen H, Kong SW, Pinkus JL, Amato AA, Elledge SJ, Greenberg SA (2013) Cytosolic 5'-nucleotidase 1A autoimmunity in sporadic inclusion body myositis. Ann Neurol 73(3):408–418. https://doi.org/10.1002/ana.23840

    Article  CAS  PubMed  Google Scholar 

  105. Tawara N, Yamashita S, Zhang X, Korogi M, Zhang Z, Doki T, Matsuo Y, Nakane S, Maeda Y, Sugie K, Suzuki N, Aoki M, Ando Y (2017) Pathomechanisms of anti-cytosolic 5'-nucleotidase 1A autoantibodies in sporadic inclusion body myositis. Ann Neurol 81(4):512–525. https://doi.org/10.1002/ana.24919

    Article  CAS  PubMed  Google Scholar 

  106. Margotta C, Fabbrizio P, Ceccanti M, Cambieri C, Ruffolo G, D'Agostino J, Trolese MC, Cifelli P, Alfano V, Laurini C, Scaricamazza S, Ferri A, Sorarù G, Palma E, Inghilleri M, Bendotti C, Nardo G (2023) Immune-mediated myogenesis and acetylcholine receptor clustering promote a slow disease progression in ALS mouse models. Inflammation Regeneration 43(1):19. https://doi.org/10.1186/s41232-023-00270-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Nguyen HP, Van Broeckhoven C, van der Zee J (2018) ALS Genes in the Genomic Era and their Implications for FTD. Trends Genet 34(6):404–423. https://doi.org/10.1016/j.tig.2018.03.001

    Article  CAS  PubMed  Google Scholar 

  108. Al-Chalabi A, Hardiman O (2013) The epidemiology of ALS: a conspiracy of genes, environment and time. Nat Rev Neurol 9(11):617–628. https://doi.org/10.1038/nrneurol.2013.203

    Article  CAS  PubMed  Google Scholar 

  109. Horimoto AMC, de Jesus LG, de Souza AS, Rodrigues SH, Kayser C (2020) Anti-annexin V autoantibodies and vascular abnormalities in systemic sclerosis: a longitudinal study. Adv Rheumatol (London, England) 60(1):38. https://doi.org/10.1186/s42358-020-00140-w

    Article  Google Scholar 

  110. Casula M, Iyer AM, Spliet WG, Anink JJ, Steentjes K, Sta M, Troost D, Aronica E (2011) Toll-like receptor signaling in amyotrophic lateral sclerosis spinal cord tissue. Neuroscience 179:233–243. https://doi.org/10.1016/j.neuroscience.2011.02.001

    Article  CAS  PubMed  Google Scholar 

  111. Drews E, Otte DM, Zimmer A (2013) Involvement of the primate specific gene G72 in schizophrenia: From genetic studies to pathomechanisms. Neurosci Biobehav Rev 37(10 Pt 1):2410–2417. https://doi.org/10.1016/j.neubiorev.2012.10.009

    Article  CAS  PubMed  Google Scholar 

  112. Wang M, Saw HP, Cui FF, Lin SY, Chang HT, Chiu CD (2018) pLG72 induces superoxide radicals via interaction and aggregation with SOD1. Free Radic Res 52(9):970–976. https://doi.org/10.1080/10715762.2018.1504293

    Article  CAS  PubMed  Google Scholar 

  113. Hwang CS, Tsai CH, Liu GT, Li W, Chang HT (2016) Decreased level of serum autoantibody against LG72 is a biosignature of amyotrophic lateral sclerosis. Biomark Med 10(1):73–79. https://doi.org/10.2217/bmm.15.80

    Article  CAS  PubMed  Google Scholar 

  114. Buchman VL, Hunter HJ, Pinõn LG, Thompson J, Privalova EM, Ninkina NN, Davies AM (1998) Persyn, a member of the synuclein family, has a distinct pattern of expression in the developing nervous system. J Neurosci 18(22):9335–9341. https://doi.org/10.1523/JNEUROSCI.18-22-09335.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ninkina N, PapAChRoni K, Robertson DC, Schmidt O, Delaney L, O'Neill F, Court F, Rosenthal A, Fleetwood-Walker SM, Davies AM, Buchman VL (2003) Neurons expressing the highest levels of gamma-synuclein are unaffected by targeted inactivation of the gene. Mol Cell Biol 23(22):8233–8245. https://doi.org/10.1128/MCB.23.22.8233-8245.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Peters OM, Shelkovnikova T, Highley JR, Cooper-Knock J, Hortobágyi T, Troakes C, Ninkina N, Buchman VL (2015) Gamma-synuclein pathology in amyotrophic lateral sclerosis. Ann Clin Transl Neurol 2(1):29–37. https://doi.org/10.1002/acn3.143

    Article  CAS  PubMed  Google Scholar 

  117. Bendotti C, Marino M, Cheroni C, Fontana E, Crippa V, Poletti A, De Biasi S (2012) Dysfunction of constitutive and inducible ubiquitin-proteasome system in amyotrophic lateral sclerosis: implication for protein aggregation and immune response. Prog Neurobiol 97(2):101–126. https://doi.org/10.1016/j.pneurobio.2011.10.001

    Article  CAS  PubMed  Google Scholar 

  118. Moradi M, Sivadasan R, Saal L, Lüningschrör P, Dombert B, Rathod RJ, Dieterich DC, Blum R, Sendtner M (2017) Differential roles of α-, β-, and γ-actin in axon growth and collateral branch formation in motoneurons. J Cell Biol 216(3):793–814. https://doi.org/10.1083/jcb.201604117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Avrameas S, Alexopoulos H, Moutsopoulos HM (2018) Natural autoantibodies: an undersugn hero of the immune system and autoimmune disorders-a point of view. Front Immunol 9:1320. https://doi.org/10.3389/fimmu.2018.01320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Xue B, Sechi LA, Kelvin DJ (2020) Human endogenous retrovirus K (HML-2) in health and disease. Front Microbiol 11:1690. https://doi.org/10.3389/fmicb.2020.01690

    Article  PubMed  PubMed Central  Google Scholar 

  121. Eisen A, Weber M (2001) The motor cortex and amyotrophic lateral sclerosis. Muscle Nerve 24(4):564–573. https://doi.org/10.1002/mus.1042

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Quan Shi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical statement

The authors declare no violation of ethical rules.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, ., Hong, Y., Wang, BR. et al. The presence and clinical significance of autoantibodies in amyotrophic lateral sclerosis: a narrative review. Neurol Sci (2024). https://doi.org/10.1007/s10072-024-07581-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10072-024-07581-x

Keywords

Navigation