Skip to main content
Log in

Sex-specific grey matter abnormalities in individuals with chronic insomnia

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Previous studies have reported sex differences in altered brain function in patients with chronic insomnia (CI). However, sex-related alterations in brain morphology have rarely been investigated. This study aimed to investigate sex-specific grey matter (GM) alterations in patients with CI and to examine the relationship between GM alterations and neuropsychological assessments. Ninety-three (65 females and 28 males) patients and 78 healthy (50 females and 28 males) controls were recruited. Structural magnetic resonance imaging data were analysed using voxel-based morphometry to test for interactions between sex and diagnosis. Spearman’s correlation was used to assess the associations among structure, disease duration, and sleep-, mood-, and cognition-related assessments. Males with CI showed reduced GM volume in the left inferior parietal lobe, left middle cingulate cortex, and right supramarginal gyrus. Females with CI showed increased GM volume in the right Rolandic operculum. Moreover, mood-related assessments were negatively correlated with GM volumes in the right supramarginal gyrus and left inferior parietal lobe in the male patients, and cognitive-related assessments were positively correlated with GM volumes in the Rolandic operculum in the female patients. Our findings indicate sex-specific alterations in brain morphology in CI, thereby broadening our understanding of sex differences in CI and potentially providing complementary evidence for the development of more effective therapies and individual treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data and material that support the findings of this study are available on request from the corresponding author. The data and material are not publicly available due to privacy or ethical restrictions.

References

  1. Morin CM, Jarrin DC, Ivers H et al (2020) Incidence, Persistence, and Remission Rates of Insomnia Over 5 Years. JAMA Netw Open 3:e2018782. https://doi.org/10.1001/jamanetworkopen.2020.18782

    Article  PubMed  PubMed Central  Google Scholar 

  2. Van Someren EJW (2021) Brain mechanisms of insomnia: new perspectives on causes and consequences. Physiol Rev 101:995–1046. https://doi.org/10.1152/physrev.00046.2019

    Article  CAS  PubMed  Google Scholar 

  3. Hertenstein E, Feige B, Gmeiner T et al (2019) Insomnia as a predictor of mental disorders: A systematic review and meta-analysis. Sleep Med Rev 43:96–105. https://doi.org/10.1016/j.smrv.2018.10.006

    Article  PubMed  Google Scholar 

  4. Riemann D, Nissen C, Palagini L et al (2015) The neurobiology, investigation, and treatment of chronic insomnia. Lancet Neurol 14:547–558. https://doi.org/10.1016/S1474-4422(15)00021-6

    Article  PubMed  Google Scholar 

  5. Fan M, Sun D, Zhou T et al (2020) Sleep patterns, genetic susceptibility, and incident cardiovascular disease: a prospective study of 385 292 UK biobank participants. Eur Heart J 41:1182–1189. https://doi.org/10.1093/eurheartj/ehz849

    Article  PubMed  Google Scholar 

  6. Jansen PR, Watanabe K, Stringer S et al (2019) Genome-wide analysis of insomnia in 1,331,010 individuals identifies new risk loci and functional pathways. Nat Genet 51:394–403. https://doi.org/10.1038/s41588-018-0333-3

    Article  CAS  PubMed  Google Scholar 

  7. Chung K-F, Yeung W-F, Ho FY-Y et al (2015) Cross-cultural and comparative epidemiology of insomnia: the Diagnostic and statistical manual (DSM), International classification of diseases (ICD) and International classification of sleep disorders (ICSD). Sleep Med 16:477–482. https://doi.org/10.1016/j.sleep.2014.10.018

    Article  PubMed  Google Scholar 

  8. Cao X-L, Wang S-B, Zhong B-L et al (2017) The prevalence of insomnia in the general population in China: A meta-analysis. PLoS One 12:e0170772. https://doi.org/10.1371/journal.pone.0170772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang B, Wing Y-K (2006) Sex differences in insomnia: a meta-analysis. Sleep 29:85–93. https://doi.org/10.1093/sleep/29.1.85

    Article  PubMed  Google Scholar 

  10. Roth T (2007) Insomnia: definition, prevalence, etiology, and consequences. J Clin Sleep Med 3:S7–S10

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bangasser DA, Wiersielis KR, Khantsis S (2016) Sex differences in the locus coeruleus-norepinephrine system and its regulation by stress. Brain Res 1641:177–188. https://doi.org/10.1016/j.brainres.2015.11.021

    Article  CAS  PubMed  Google Scholar 

  12. Duffy JF, Cain SW, Chang A-M et al (2011) Sex difference in the near-24-hour intrinsic period of the human circadian timing system. Proc Natl Acad Sci U S A 108(Suppl 3):15602–15608. https://doi.org/10.1073/pnas.1010666108

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mong JA, Cusmano DM (2016) Sex differences in sleep: impact of biological sex and sex steroids. Philos Trans R Soc Lond Ser B Biol Sci 371:20150110. https://doi.org/10.1098/rstb.2015.0110

    Article  CAS  Google Scholar 

  14. Zhang J, Chan NY, Lam SP et al (2016) Emergence of Sex Differences in Insomnia Symptoms in Adolescents: A Large-Scale School-Based Study. Sleep 39:1563–1570. https://doi.org/10.5665/sleep.6022

    Article  PubMed  PubMed Central  Google Scholar 

  15. Potvin O, Lorrain D, Forget H et al (2012) Sleep quality and 1-year incident cognitive impairment in community-dwelling older adults. Sleep 35:491–499. https://doi.org/10.5665/sleep.1732

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dijk DJ, James LM, Peters S et al (2010) Sex differences and the effect of gaboxadol and zolpidem on EEG power spectra in NREM and REM sleep. J Psychopharmacol 24:1613–1618. https://doi.org/10.1177/0269881109105788

    Article  CAS  PubMed  Google Scholar 

  17. Herring WJ, Connor KM, Snyder E et al (2017) Clinical profile of suvorexant for the treatment of insomnia over 3 months in women and men: subgroup analysis of pooled phase-3 data. Psychopharmacology 234:1703–1711. https://doi.org/10.1007/s00213-017-4573-1

    Article  CAS  PubMed  Google Scholar 

  18. Dai X-J, Nie X, Liu X et al (2016) Gender Differences in Regional Brain Activity in Patients with Chronic Primary Insomnia: Evidence from a Resting-State fMRI Study. J Clin Sleep Med 12:363–374. https://doi.org/10.5664/jcsm.5586

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yang L, Yu S, Zhang L et al (2022) Gender Differences in Hippocampal/Parahippocampal Functional Connectivity Network in Patients Diagnosed with Chronic Insomnia Disorder. Nat Sci Sleep 14:1175–1186. https://doi.org/10.2147/NSS.S355922

    Article  PubMed  PubMed Central  Google Scholar 

  20. Draganski B, Gaser C, Busch V et al (2004) Neuroplasticity: changes in grey matter induced by training. Nature 427:311–312. https://doi.org/10.1038/427311a

    Article  CAS  PubMed  Google Scholar 

  21. Passingham RE, Stephan KE, Kötter R (2002) The anatomical basis of functional localization in the cortex. Nat Rev Neurosci 3:606–616. https://doi.org/10.1038/nrn893

    Article  CAS  PubMed  Google Scholar 

  22. Ashburner J, Friston KJ (2000) Voxel-based morphometry--the methods. Neuroimage 11:805–821. https://doi.org/10.1006/nimg.2000.0582

  23. Fischl B, Salat DH, Busa E et al (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33:341–355. https://doi.org/10.1016/s0896-6273(02)00569-x

    Article  CAS  PubMed  Google Scholar 

  24. Tahmasian M, Noori K, Samea F et al (2018) A lack of consistent brain alterations in insomnia disorder: An activation likelihood estimation meta-analysis. Sleep Med Rev 42:111–118. https://doi.org/10.1016/j.smrv.2018.07.004

    Article  PubMed  PubMed Central  Google Scholar 

  25. Paulekiene G, Pajarskiene M, Pajediene E, Radziunas A (2022) Sleep Dysfunction and Grey Matter Volume. Curr Neurol Neurosci Rep 22:275–283. https://doi.org/10.1007/s11910-022-01190-x

    Article  PubMed  Google Scholar 

  26. Altena E, Vrenken H, Van Der Werf YD et al (2010) Reduced orbitofrontal and parietal gray matter in chronic insomnia: a voxel-based morphometric study. Biol Psychiatry 67:182–185. https://doi.org/10.1016/j.biopsych.2009.08.003

    Article  PubMed  Google Scholar 

  27. Mitchell RH, Metcalfe AW, Islam AH et al (2018) Sex differences in brain structure among adolescents with bipolar disorder. Bipolar Disord. https://doi.org/10.1111/bdi.12663

  28. Luders E, Toga AW (2010) Sex differences in brain anatomy. Prog Brain Res 186:3–12. https://doi.org/10.1016/B978-0-444-53630-3.00001-4

    Article  PubMed  Google Scholar 

  29. Goldstein JM, Seidman LJ, Horton NJ et al (2001) Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cereb Cortex 11:490–497. https://doi.org/10.1093/cercor/11.6.490

    Article  CAS  PubMed  Google Scholar 

  30. Wang J, Xie S, Guo X et al (2017) Correspondent Functional Topography of the Human Left Inferior Parietal Lobule at Rest and Under Task Revealed Using Resting-State fMRI and Coactivation Based Parcellation. Hum Brain Mapp 38:1659–1675. https://doi.org/10.1002/hbm.23488

    Article  PubMed  PubMed Central  Google Scholar 

  31. Igelström KM, Graziano MSA (2017) The inferior parietal lobule and temporoparietal junction: A network perspective. Neuropsychologia 105:70–83. https://doi.org/10.1016/j.neuropsychologia.2017.01.001

    Article  PubMed  Google Scholar 

  32. Foster BL, Rangarajan V, Shirer WR, Parvizi J (2015) Intrinsic and task-dependent coupling of neuronal population activity in human parietal cortex. Neuron 86:578–590. https://doi.org/10.1016/j.neuron.2015.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rohr CS, Villringer A, Solms-Baruth C et al (2016) The neural networks of subjectively evaluated emotional conflicts. Hum Brain Mapp 37:2234–2246. https://doi.org/10.1002/hbm.23169

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tumati S, Martens S, de Jong BM, Aleman A (2019) Lateral parietal cortex in the generation of behavior: Implications for apathy. Prog Neurobiol 175:20–34. https://doi.org/10.1016/j.pneurobio.2018.12.003

    Article  CAS  PubMed  Google Scholar 

  35. Fairchild G, Van Goozen SHM, Calder AJ et al (2009) Deficits in facial expression recognition in male adolescents with early-onset or adolescence-onset conduct disorder. J Child Psychol Psychiatry 50:627–636. https://doi.org/10.1111/j.1469-7610.2008.02020.x

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fairchild G, van Goozen SHM, Stollery SJ et al (2009) Decision making and executive function in male adolescents with early-onset or adolescence-onset conduct disorder and control subjects. Biol Psychiatry 66:162–168. https://doi.org/10.1016/j.biopsych.2009.02.024

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ibrahim K, Kalvin C, Li F et al (2021) Sex differences in medial prefrontal and parietal cortex structure in children with disruptive behavior. Dev Cogn Neurosci 47:100884. https://doi.org/10.1016/j.dcn.2020.100884

    Article  PubMed  Google Scholar 

  38. Zhou F, Huang S, Zhuang Y et al (2017) Frequency-dependent changes in local intrinsic oscillations in chronic primary insomnia: A study of the amplitude of low-frequency fluctuations in the resting state. Neuroimage Clin 15:458–465. https://doi.org/10.1016/j.nicl.2016.05.011

    Article  PubMed  Google Scholar 

  39. Li M, Yan J, Li S et al (2018) Altered gray matter volume in primary insomnia patients: a DARTEL-VBM study. Brain Imaging Behav 12:1759–1767. https://doi.org/10.1007/s11682-018-9844-x

    Article  PubMed  Google Scholar 

  40. Heilbronner SR, Hayden BY (2016) Dorsal Anterior Cingulate Cortex: A Bottom-Up View. Annu Rev Neurosci 39:149–170. https://doi.org/10.1146/annurev-neuro-070815-013952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vogt BA (2019) Cingulate cortex in the three limbic subsystems. Handb Clin Neurol 166:39–51. https://doi.org/10.1016/B978-0-444-64196-0.00003-0

    Article  PubMed  Google Scholar 

  42. Procyk E, Fontanier V, Sarazin M et al (2021) The midcingulate cortex and temporal integration. Int Rev Neurobiol 158:395–419. https://doi.org/10.1016/bs.irn.2020.12.004

    Article  PubMed  Google Scholar 

  43. Caruana F, Gerbella M, Avanzini P et al (2018) Motor and emotional behaviours elicited by electrical stimulation of the human cingulate cortex. Brain 141:3035–3051. https://doi.org/10.1093/brain/awy219

    Article  PubMed  Google Scholar 

  44. Yamasue H, Iwanami A, Hirayasu Y et al (2004) Localized volume reduction in prefrontal, temporolimbic, and paralimbic regions in schizophrenia: an MRI parcellation study. Psychiatry Res 131:195–207. https://doi.org/10.1016/j.pscychresns.2004.05.004

    Article  PubMed  Google Scholar 

  45. Emond V, Joyal C, Poissant H (2009) Structural and functional neuroanatomy of attention-deficit hyperactivity disorder (ADHD). Encephale 35:107–114. https://doi.org/10.1016/j.encep.2008.01.005

    Article  CAS  PubMed  Google Scholar 

  46. Rahayel S, Postuma RB, Montplaisir J et al (2018) Cortical and subcortical gray matter bases of cognitive deficits in REM sleep behavior disorder. Neurology 90:e1759–e1770. https://doi.org/10.1212/WNL.0000000000005523

    Article  PubMed  PubMed Central  Google Scholar 

  47. Vogt BA (2019) Cingulate impairments in ADHD: Comorbidities, connections, and treatment. Handb Clin Neurol 166:297–314. https://doi.org/10.1016/B978-0-444-64196-0.00016-9

    Article  PubMed  Google Scholar 

  48. Li S, Wang BA, Li C et al (2021) Progressive gray matter hypertrophy with severity stages of insomnia disorder and its relevance for mood symptoms. Eur Radiol 31:6312–6322. https://doi.org/10.1007/s00330-021-07701-7

    Article  CAS  PubMed  Google Scholar 

  49. Amaresha AC, Danivas V, Shivakumar V et al (2014) Clinical correlates of parametric digit-symbol substitution test in schizophrenia. Asian J Psychiatr 10:45–50. https://doi.org/10.1016/j.ajp.2014.03.010

    Article  PubMed  PubMed Central  Google Scholar 

  50. Nasreddine ZS, Phillips NA, Bédirian V et al (2005) The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 53:695–699. https://doi.org/10.1111/j.1532-5415.2005.53221.x

    Article  PubMed  Google Scholar 

  51. Triarhou LC (2021) Cytoarchitectonics of the Rolandic operculum: morphofunctional ponderings. Brain Struct Funct 226:941–950. https://doi.org/10.1007/s00429-021-02258-z

    Article  PubMed  Google Scholar 

  52. Braun AR, Balkin TJ, Wesenten NJ et al (1997) Regional cerebral blood flow throughout the sleep-wake cycle. An H2(15) O PET study. Brain 120(Pt 7):1173–1197. https://doi.org/10.1093/brain/120.7.1173

    Article  PubMed  Google Scholar 

  53. Zeng H-R, Xu F, Zhang J et al (2022) Vigilant Attention, Cerebral Blood Flow and Grey Matter Volume Change after 36 h of Acute Sleep Deprivation in Healthy Male Adults: A Pilot Study. Brain Sci 12. https://doi.org/10.3390/brainsci12111534

  54. Mălîia M-D, Donos C, Barborica A et al (2018) Functional mapping and effective connectivity of the human operculum. Cortex 109:303–321. https://doi.org/10.1016/j.cortex.2018.08.024

    Article  PubMed  Google Scholar 

  55. Tonkonogy J, Goodglass H (1981) Language function, foot of the third frontal gyrus, and rolandic operculum. Arch Neurol 38:486–490. https://doi.org/10.1001/archneur.1981.00510080048005

    Article  CAS  PubMed  Google Scholar 

  56. Zhao R, Zhang X, Zhu Y et al (2018) Prediction of the Effect of Sleep Deprivation on Response Inhibition via Machine Learning on Structural Magnetic Resonance Imaging Data. Front Hum Neurosci 12:276. https://doi.org/10.3389/fnhum.2018.00276

    Article  PubMed  PubMed Central  Google Scholar 

  57. Gignac GE, Weiss LG (2015) Digit Span is (mostly) related linearly to general intelligence: Every extra bit of span counts. Psychol Assess 27:1312–1323. https://doi.org/10.1037/pas0000105

    Article  PubMed  Google Scholar 

  58. Cunnington D, Junge MF, Fernando AT (2013) Insomnia: prevalence, consequences and effective treatment. Med J Aust 199:S36–S40. https://doi.org/10.5694/mja13.10718

    Article  PubMed  Google Scholar 

  59. Blake MJ, Trinder JA, Allen NB (2018) Mechanisms underlying the association between insomnia, anxiety, and depression in adolescence: Implications for behavioral sleep interventions. Clin Psychol Rev 63:25–40. https://doi.org/10.1016/j.cpr.2018.05.006

    Article  PubMed  Google Scholar 

  60. Yaffe K, Falvey CM, Hoang T (2014) Connections between sleep and cognition in older adults. Lancet Neurol 13:1017–1028. https://doi.org/10.1016/S1474-4422(14)70172-3

    Article  PubMed  Google Scholar 

  61. Xu W, Tan C-C, Zou J-J et al (2020) Sleep problems and risk of all-cause cognitive decline or dementia: an updated systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 91:236–244. https://doi.org/10.1136/jnnp-2019-321896

    Article  PubMed  Google Scholar 

  62. Greenblatt DJ, Harmatz JS, von Moltke LL et al (2000) Comparative kinetics and response to the benzodiazepine agonists triazolam and zolpidem: evaluation of sex-dependent differences. J Pharmacol Exp Ther 293:435–443

    CAS  PubMed  Google Scholar 

  63. Nowakowski S, Meers JM (2019) Cognitive Behavioral Therapy for Insomnia and Women’s Health: Sex as a Biological Variable. Sleep Med Clin 14:185–197. https://doi.org/10.1016/j.jsmc.2019.01.002

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank all the patients and volunteers for participating in this study. Also, the authors are highly grateful to the anonymous reviewers for their significant and constructive comments and suggestions, which greatly improve the article.

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 82001792) and the Science Foundation of Guangdong Second Provincial General Hospital (No. 3D-A2021009).

Author information

Authors and Affiliations

Authors

Contributions

Xiaofen Ma: Conceived and designed the experiments, Performed the experiments, Contributed reagents/materials/analysis tools. Jingwen Li and Xinzhi Wang: Analyzed the data, Figures, Writing-original draft; Yi Yin and Yunfan Wu: Contributed reagents/materials/analysis tools. Mengchen Liu and Guang Xu: Performed the experiments.

Corresponding author

Correspondence to Xiaofen Ma.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ., Wang, X., Liu, M. et al. Sex-specific grey matter abnormalities in individuals with chronic insomnia. Neurol Sci 45, 2301–2310 (2024). https://doi.org/10.1007/s10072-023-07224-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-023-07224-7

Keywords

Navigation