Skip to main content
Log in

Progress in direct reprogramming of dopaminergic cell replacement therapy

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a gradual neurodegenerative disease. While drug therapy and surgical treatments have been the primary means of addressing PD, they do not offer a cure, and the risks associated with surgical treatment are high. Recent advances in cell reprogramming have given rise to new prospects for the treatment of Parkinson’s disease (PD), with induced pluripotent stem cells (iPSCs), induced dopamine neurons (iDNs), and induced neural stem cells (iNSCs) being created. These cells can potentially be used in the treatment of Parkinson’s disease. On the other hand, this article emphasizes the limits of iPSCs and iNSCs in the context of Parkinson’s disease treatment, as well as approaches for direct reprogramming of somatic cells into iDNs. The paper will examine the benefits and drawbacks of directly converting somatic cells into iDNs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PD:

Parkinson’s disease

DBS:

Deep brain stimulation

iPSCs:

Induced pluripotent stem cells

iNSCs:

Induced neural stem cells

iDNs:

Induced dopamine neurons

6-OHDA:

6-Hydroxydopamine

MEFs:

Mouse embryonic fibroblasts

DP:

Dopamine precursors

VPA:

Valproic acid

References

  1. Surmeier DJ (2018) Determinants of dopaminergic neuron loss in Parkinson’s disease. FEBS J 285(19):3657–3668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aquino CC, Fox SH (2015) Clinical spectrum of levodopa-induced complications. Mov Disord 30(1):80–89

    Article  CAS  PubMed  Google Scholar 

  3. Antonini A, Moro E, Godeiro C, Reichmann H (2018) Medical and surgical management of advanced Parkinson’s disease. Mov Disord 33(6):900–908

    Article  PubMed  Google Scholar 

  4. Han F, Liu Y, Huang J, Zhang X, Wei C (2021) Current approaches and molecular mechanisms for directly reprogramming fibroblasts into neurons and dopamine neurons. Front Aging Neurosci 13:738529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  6. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  PubMed  Google Scholar 

  7. Han F, Baremberg D, Gao J, Duan J, Lu X, Zhang N, Chen Q (2015) Development of stem cell-based therapy for Parkinson’s disease. Transl Neurodegener 4:16

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yamanaka S (2020) Pluripotent stem cell-based cell therapy-promise and challenges. Cell stem cell 27(4):523–531

    Article  CAS  PubMed  Google Scholar 

  9. Hou S, Lu P (2016) Direct reprogramming of somatic cells into neural stem cells or neurons for neurological disorders. Neural Re-gen Res 11(1):28–31

    Article  Google Scholar 

  10. Ford E, Pearlman J, Ruan T, Manion J, Waller M, Neely GG, Caron L (2020) Human pluripotent stem cells-based therapies for neurodegenerative diseases: current status and challenges. Cells 9(11):2517

  11. Cai CY, Meng FL, Rao L, Liu YY, Zhao XL (2020) Induced pluripotent stem cell technology and its application in disease research. Yi Chuan 42(11):1042–1061

    PubMed  Google Scholar 

  12. Reddy AP, Ravichandran J (1866) Carkaci-Salli N (2020) Neural regeneration therapies for Alzheimer’s and Parkinson’s disease-related disorders. Biochim Biophys Acta Mol Basis Dis 4:165506

    Google Scholar 

  13. Hayashi Y, Ohnuma K, Furue MK (2019) Pluripotent stem cell heterogeneity. Adv Exp Med Biol 1123:71–94

    Article  CAS  PubMed  Google Scholar 

  14. Chang CY, Ting HC, Liu CA, Su HL, Chiou TW, Lin SZ, Harn HJ, Ho TJ (2020) Induced pluripotent stem cell (iPSC)-based neurodegenerative disease models for phenotype recapitulation and drug screening. Molecules 25(8):2000

  15. Parmar M (2018) Towards stem cell based therapies for Parkinson’s disease. Development 145(1):dev156117

  16. Xu X, Huang J, Li J, Liu L, Han C, Shen Y, Zhang G, Jiang H, Lin Z, Xiong N et al (2016) Induced pluripotent stem cells and Parkinson’s disease: modelling and treatment. Cell Prolif 49(1):14–26

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shahbazi E, Mirakhori F, Ezzatizadeh V, Baharvand H (2018) Reprogramming of somatic cells to induced neural stem cells. Methods 133:21–28

    Article  CAS  PubMed  Google Scholar 

  18. Monni E, Cusulin C, Cavallaro M, Lindvall O, Kokaia Z (2014) Human fetal striatum-derived neural stem (NS) cells differentiate to mature neurons in vitro and in vivo. Curr Stem Cell Res Ther 9(4):338–346

    Article  CAS  PubMed  Google Scholar 

  19. Choi DH, Kim JH, Kim SM, Kang K, Han DW, Lee J (2017) Therapeutic potential of induced neural stem cells for Parkinson’s disease. Int J Mol Sci 18(1):224

    Article  PubMed  PubMed Central  Google Scholar 

  20. Xu Z, Su S, Zhou S, Yang W, Deng X, Sun Y, Li L, Li Y (2020) How to reprogram human fibroblasts to neurons. Cell Biosci 10:116

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang H, Yang Y, Liu J, Qian L (2021) Direct cell reprogramming: approaches, mechanisms and progress. Nat Rev Mol Cell Biol 22(6):410–424

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A, Björklund A, Lindvall O, Jakobsson J, Parmar M (2011) Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci 108(25):10343–10348

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Caiazzo M, Dell'Anno MT, Dvoretskova E, Lazarevic D, Taverna S, Leo D, Sotnikova TD, Menegon A, Roncaglia P, Colciago G et al (2011) Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476(7359):224–227

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Kim J, Su SC, Wang H, Cheng AW, Cassady JP, Lodato MA, Lengner CJ, Chung CY, Dawlaty MM, Tsai LH et al (2011) Functional integration of dopaminergic neurons directly converted from mouse fibroblasts. Cell Stem Cell 9(5):413–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dell'Anno MT, Caiazzo M, Leo D, Dvoretskova E, Medrihan L, Colasante G, Giannelli S, Theka I, Russo G, Mus L et al (2014) Remote control of induced dopaminergic neurons in parkinsonian rats. J Clin Invest 124(7):3215–3229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Oh SI, Park HS, Hwang I, Park HK, Choi KA, Jeong H, Kim SW, Hong S (2014) Efficient reprogramming of mouse fibroblasts to neuronal cells including dopaminergic neurons. Sci World J 2014:957548

    Article  Google Scholar 

  27. Tian C, Li Y, Huang Y, Wang Y, Chen D, Liu J, Deng X, Sun L, Anderson K, Qi X et al (2015) Selective generation of dopaminergic precursors from mouse fibroblasts by direct lineage conversion. Sci Rep 5:12622

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang Y, Yang H, Yang Q, Yang J, Wang H, Xu H, Gao WQ (2016) Chemical conversion of mouse fibroblasts into functional dopaminergic neurons. Exp Cell Res 347(2):283–292

    Article  CAS  PubMed  Google Scholar 

  29. Qin H, Zhao AD, Sun ML, Ma K, Fu XB (2020) Direct conversion of human fibroblasts into dopaminergic neuron-like cells using small molecules and protein factors. Mil Med Res 7(1):52

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Pereira M, Pfisterer U, Rylander D, Torper O, Lau S, Lundblad M, Grealish S, Parmar M (2014) Highly efficient generation of induced neurons from human fibroblasts that survive transplantation into the adult rat brain. Sci Rep 4:6330

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jiang H, Xu Z, Zhong P, Ren Y, Liang G, Schilling HA, Hu Z, Zhang Y, Wang X, Chen S et al (2015) Cell cycle and p53 gate the direct conversion of human fibroblasts to dopaminergic neurons. Nat Commun 6:10100

    Article  ADS  PubMed  Google Scholar 

  32. di Val R, Cervo P, Romanov RA, Spigolon G, Masini D, Martín-Montañez E, Toledo EM, La Manno G, Feyder M, Pifl C, Ng YH et al (2017) Induction of functional dopamine neurons from human astrocytes in vitro and mouse astrocytes in a Parkinson’s disease model. Nat Biotechnolo 35(5):444–452

    Article  Google Scholar 

  33. De Gregorio R, Pulcrano S, De Sanctis C, Volpicelli F, Guatteo E, von Oerthel L, Latagliata EC, Esposito R, Piscitelli RM, Perrone-Capano C et al (2018) miR-34b/c regulates Wnt1 and enhances mesencephalic dopaminergic neuron differentiation. Stem Cell Rep 10(4):1237–1250

    Article  Google Scholar 

  34. Pu J, Gao T, Zheng R, Fang Y, Ruan Y, Jin C, Shen T, Tian J, Zhang B (2020) Parkin mutation decreases neurite complexity and maturation in neurons derived from human fibroblasts. Brain Res Bull 159:9–15

    Article  CAS  PubMed  Google Scholar 

  35. Zhou H, Su J, Hu X, Zhou C, Li H, Chen Z, Xiao Q, Wang B, Wu W, Sun Y et al (2020) Glia-to-neuron conversion by CRISPR-CasRx alleviates symptoms of neurological disease in mice. Cell 181(3):590–603.e516

    Article  CAS  PubMed  Google Scholar 

  36. Qian H, Kang X, Hu J, Zhang D, Liang Z, Meng F, Zhang X, Xue Y, Maimon R, Dowdy SF et al (2020) Reversing a model of Parkinson’s disease with in situ converted nigral neurons. Nature 582(7813):550–556

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yoo J, Noh M, Kim H, Jeon NL, Kim BS, Kim J (2015) Nanogrooved substrate promotes direct lineage reprogramming of fibroblasts to functional induced dopaminergic neurons. Biomaterials 45:36–45

    Article  CAS  PubMed  Google Scholar 

  38. Yoo J, Lee E, Kim HY, Youn DH, Jung J, Kim H, Chang Y, Lee W, Shin J, Baek S et al (2017) Electromagnetized gold nanoparticles mediate direct lineage reprogramming into induced dopamine neurons in vivo for Parkinson’s disease therapy. Nat Nanotechnolo 12(10):1006–1014

    Article  ADS  CAS  Google Scholar 

  39. Chang JH, Tsai PH, Wang KY, Wei YT, Chiou SH, Mou CY (2018) Generation of functional dopaminergic neurons from reprogramming fibroblasts by nonviral-based mesoporous silica nanoparticles. Sci Rep 8(1):11

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  40. Chen Y, Pu J, Zhang B (2016) Progress and challenges of cell replacement therapy for neurodegenerative diseases based on direct neural reprogramming. Hum Gene ther 27(12):962–970

    Article  CAS  PubMed  Google Scholar 

  41. Diener C, Keller A, Meese E (2022) Emerging concepts of miRNA therapeutics: from cells to clinic. Trends Genet 38(6):613–626

    Article  CAS  PubMed  Google Scholar 

  42. Titze-de-Almeida SS, Soto-Sánchez C, Fernandez E, Koprich JB, Brotchie JM, Titze-de-Almeida R (2020) The promise and challenges of developing miRNA-based therapeutics for Parkinson’s disease. Cells 9(4):841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ambasudhan R, Talantova M, Coleman R, Yuan X, Zhu S, Lipton SA, Ding S (2011) Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell 9(2):113–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Grealish S, Drouin-Ouellet J, Parmar M (2016) Brain repair and reprogramming: the route to clinical translation. J Intern Med 280(3):265–275

    Article  CAS  PubMed  Google Scholar 

  45. Wang Q, Liu Y, Han C, Yang M, Huang F, Duan X, Wang S, Yu Y, Liu J, Yang H et al (2021) Efficient RNA virus targeting via CRISPR/CasRx in fish. J Virol 95(19):e0046121

    Article  PubMed  Google Scholar 

  46. Chuang YF, Wang PY, Kumar S, Lama S, Lin FL, Liu GS (2021) Methods for in vitro CRISPR/CasRx-mediated RNA editing. Front Cell Dev Biol 9:667879

    Article  PubMed  PubMed Central  Google Scholar 

  47. Konermann S, Lotfy P, Brideau NJ, Oki J, Shokhirev MN, Hsu PD (2018) Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell 173(3):665–676.e614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang LL, Serrano C, Zhong X, Ma S, Zou Y, Zhang CL (2021) Revisiting astrocyte to neuron conversion with lineage tracing in vivo. Cell 184(21):5465–5481.e5416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mertens J, Marchetto MC, Bardy C, Gage FH (2016) Evaluating cell reprogramming, differentiation and conversion technologies in neuroscience. Nat Rev Neurosci 17(7):424–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Arenas E, Denham M, Villaescusa JC (2015) How to make a midbrain dopaminergic neuron. Development 142(11):1918–1936

    Article  CAS  PubMed  Google Scholar 

  51. Playne R, Connor B (2017) Understanding Parkinson’s disease through the use of cell reprogramming. Stem Cell Rev Rep 13(2):151–169

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Shandong Province Natural Science Foundation Grants ZR2018LC008 (Y.W.) and Yantai Science and Technology Innovation Development Plan 2020XDRH106 (Y.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Si Wang.

Ethics declarations

Ethical approval

This article does not contain any study with human subjects performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y.Y., Xu, H. & Wang, Y.S. Progress in direct reprogramming of dopaminergic cell replacement therapy. Neurol Sci 45, 873–881 (2024). https://doi.org/10.1007/s10072-023-07175-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-023-07175-z

Keywords

Navigation