Skip to main content

Advertisement

Log in

Theta-burst stimulation as a therapeutic tool in neurological pathology: a systematic review

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

TBS (theta-burst stimulation) is a novel therapeutic approach in a wide range of neurological diseases. The present systematic review aims to identify the various protocols used in the last years, to assess study quality and to offer a general overview of the current state of the literature. The systematic review was conducted according to the Preferred Reporting Item for Systematic Review and Meta-Analyses (PRISMA) guidelines. We applied the following inclusion criteria: (1) population over 18 years old with diagnosed neurological disorders, (2) patients treated with sessions of theta-burst stimulation, (3) randomized-controlled clinical trials, (4) articles in the English language, and (5) studies that report response and score reduction on a validated scale of the investigated disorder or remission rates. We included in the final analysis 56 randomized controlled trials focusing on different neurological pathologies (stroke, Parkinson`s disease, multiple sclerosis, tinnitus, dystonia, chronic pain, essential tremor and tic disorder), and we extracted data regarding study design, groups and comparators, sample sizes, type of coil, stimulation parameters (frequency, number of pulses, intensity, stimulation site etc.), number of sessions, follow-up, assessment through functional connectivity and neurological scales used. We observed a great interstudy heterogenicity that leads to a difficulty in drawing plain conclusions. TBS protocols have shown promising results in improving various symptoms in patients with neurological disorders, but larger and more coherent studies, using similar stimulation protocols and evaluation scales, are needed to establish guideline recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Huang Y-Z, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC (2005) Theta burst stimulation of the human motor cortex. Neuron 45(2):201–206. https://doi.org/10.1016/j.neuron.2004.12.033

    Article  CAS  PubMed  Google Scholar 

  2. D. M. Blumberger et al., ‘Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): a randomised non-inferiority trial’, Lancet, vol. 391, no. 10131, pp. 1683–1692, Apr. 2018, doi: https://doi.org/10.1016/S0140-6736(18)30295-2.

  3. Lefaucheur J-P et al (2020) Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): an update (2014–2018). Clin Neurophysiol 131(2):474–528. https://doi.org/10.1016/j.clinph.2019.11.002

    Article  PubMed  Google Scholar 

  4. Page MJ et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ:n71. https://doi.org/10.1136/bmj.n71

  5. ‘PROSPERO registration - theta-burst stimulation as a therapeutic tool in neurological pathology – a systematic review’. Available: https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=275681

  6. Moher D, Schulz KF, Altman DG (2001) The CONSORT statement: revised recommendations for improving the quality of reports of parallel-group randomised trials. Lancet 357(9263):1191–1194

    Article  CAS  PubMed  Google Scholar 

  7. Lefaucheur J-P et al (2014) Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol 125(11):2150–2206. https://doi.org/10.1016/j.clinph.2014.05.021

    Article  PubMed  Google Scholar 

  8. Talelli P et al (2012) Theta burst stimulation in the rehabilitation of the upper limb: a semirandomized, placebo-controlled trial in chronic stroke patients. Neurorehabil Neural Repair 26(8):976–987. https://doi.org/10.1177/1545968312437940

    Article  PubMed  PubMed Central  Google Scholar 

  9. Di Lazzaro V et al (2013) Inhibitory theta burst stimulation of affected hemisphere in chronic stroke: a proof of principle, sham-controlled study. Neurosci. Lett 553:148–152. https://doi.org/10.1016/j.neulet.2013.08.013

    Article  CAS  PubMed  Google Scholar 

  10. Sung W-H, Wang C-P, Chou C-L, Chen Y-C, Chang Y-C, Tsai P-Y (2013) Efficacy of coupling inhibitory and facilitatory repetitive transcranial magnetic stimulation to enhance motor recovery in hemiplegic stroke patients. Stroke 44(5):1375–1382. https://doi.org/10.1161/STROKEAHA.111.000522

    Article  PubMed  Google Scholar 

  11. Volz LJ et al (2016) Shaping early reorganization of neural networks promotes motor function after stroke. Cereb Cortex 26(6):2882–2894. https://doi.org/10.1093/cercor/bhw034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen Y-J et al (2019) Intermittent theta burst stimulation enhances upper limb motor function in patients with chronic stroke: a pilot randomized controlled trial. BMC Neurol 19(1):69. https://doi.org/10.1186/s12883-019-1302-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Meng Y, Zhang D, Hai H, Zhao Y-Y, Ma Y-W (2020) Efficacy of coupling intermittent theta-burst stimulation and 1 Hz repetitive transcranial magnetic stimulation to enhance upper limb motor recovery in subacute stroke patients: a randomized controlled trial. Restor Neurol Neurosci 38(1):109–118. https://doi.org/10.3233/RNN-190953

    Article  PubMed  Google Scholar 

  14. Liao L-Y, Xie Y-J, Chen Y, Gao Q (2021) Cerebellar theta-burst stimulation combined with physiotherapy in subacute and chronic stroke patients: a pilot randomized controlled trial. Neurorehabil Neural Repair 35(1):23–32. https://doi.org/10.1177/1545968320971735

    Article  PubMed  Google Scholar 

  15. Chen Y-H et al (2021) Augmented efficacy of intermittent theta burst stimulation on the virtual reality-based cycling training for upper limb function in patients with stroke: a double-blinded, randomized controlled trial. J Neuroengineering Rehabil 18(1):91. https://doi.org/10.1186/s12984-021-00885-5

    Article  Google Scholar 

  16. Kuzu Ö, Adiguzel E, Kesikburun S, Yaşar E, Yılmaz B (2021) The effect of sham controlled continuous theta burst stimulation and low frequency repetitive transcranial magnetic stimulation on upper extremity spasticity and functional recovery in chronic ischemic stroke patients. J Stroke Cerebrovasc Dis 30(7):105795. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105795

    Article  PubMed  Google Scholar 

  17. Kim DH, Shin JC, Jung S, Jung T-M, Kim DY (2015) Effects of intermittent theta burst stimulation on spasticity after stroke. NeuroReport 26(10):561–566. https://doi.org/10.1097/WNR.0000000000000388

    Article  PubMed  PubMed Central  Google Scholar 

  18. Li D, Cheng A, Zhang Z, Sun Y, Liu Y (2021) Effects of low-frequency repetitive transcranial magnetic stimulation combined with cerebellar continuous theta burst stimulation on spasticity and limb dyskinesia in patients with stroke. BMC Neurol 21(1):369. https://doi.org/10.1186/s12883-021-02406-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dionísio A et al (2021) The role of continuous theta burst TMS in the neurorehabilitation of subacute stroke patients: a placebo-controlled study. Front Neurol 12:749798. https://doi.org/10.3389/fneur.2021.749798

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang JJ, Bai Z, Fong KNK (2022) Priming intermittent theta burst stimulation for hemiparetic upper limb after stroke: a randomized controlled trial. Stroke 53(7):2171–2181. https://doi.org/10.1161/STROKEAHA.121.037870

    Article  PubMed  Google Scholar 

  21. Chang P-W, Lu C-F, Chang S-T, Tsai P-Y (2022) Functional near-infrared spectroscopy as a target navigator for rTMS modulation in patients with hemiplegia: a randomized control study. Neurol Ther 11(1):103–121. https://doi.org/10.1007/s40120-021-00300-0

    Article  PubMed  Google Scholar 

  22. Chen Y et al (2021) Cerebellar intermittent theta-burst stimulation reduces upper limb spasticity after subacute stroke: a randomized controlled trial. Front Neural Circuits 15:655502. https://doi.org/10.3389/fncir.2021.655502

    Article  PubMed  PubMed Central  Google Scholar 

  23. Vink JJT et al (2023) Continuous theta-burst stimulation of the contralesional primary motor cortex for promotion of upper limb recovery after stroke: a randomized controlled trial. Stroke:STROKEAHA.123.042924. https://doi.org/10.1161/STROKEAHA.123.042924

  24. Koch G et al (2012) Theta-burst stimulation of the left hemisphere accelerates recovery of hemispatial neglect. Neurology 78(1):24–30. https://doi.org/10.1212/WNL.0b013e31823ed08f

    Article  CAS  PubMed  Google Scholar 

  25. Cazzoli D et al (2012) Theta burst stimulation reduces disability during the activities of daily living in spatial neglect. Brain 135(11):3426–3439. https://doi.org/10.1093/brain/aws182

    Article  PubMed  Google Scholar 

  26. Hopfner S et al (2015) Enhancing treatment effects by combining continuous theta burst stimulation with smooth pursuit training. Neuropsychologia 74:145–151. https://doi.org/10.1016/j.neuropsychologia.2014.10.018

    Article  PubMed  Google Scholar 

  27. Nyffeler T, Cazzoli D, Hess CW, Müri RM (2009) One session of repeated parietal theta burst stimulation trains induces long-lasting improvement of visual neglect. Stroke 40(8):2791–2796. https://doi.org/10.1161/STROKEAHA.109.552323

    Article  PubMed  Google Scholar 

  28. Yang W et al (2015) Comparison of different stimulation parameters of repetitive transcranial magnetic stimulation for unilateral spatial neglect in stroke patients. J Neurol Sci 359(1–2):219–225. https://doi.org/10.1016/j.jns.2015.08.1541

    Article  PubMed  Google Scholar 

  29. Fu W et al (2017) Continuous theta-burst stimulation may improve visuospatial neglect via modulating the attention network: a randomized controlled study. Top Stroke Rehabil 24(4):236–241. https://doi.org/10.1080/10749357.2016.1253139

    Article  PubMed  Google Scholar 

  30. Nyffeler T et al (2019) Theta burst stimulation in neglect after stroke: functional outcome and response variability origins. Brain 142(4):992–1008. https://doi.org/10.1093/brain/awz029

    Article  PubMed  Google Scholar 

  31. Vatanparasti S, Kazemnejad A, Yoonessi A, Oveisgharan S (2019) The effect of continuous theta-burst transcranial magnetic stimulation combined with prism adaptation on the neglect recovery in stroke patients. J Stroke Cerebrovasc Dis 28(11):104296. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.07.012

    Article  PubMed  Google Scholar 

  32. Versace V et al (2020) Facilitation of auditory comprehension after theta burst stimulation of Wernicke’s area in stroke patients: a pilot study. Front Neurol 10:1319. https://doi.org/10.3389/fneur.2019.01319

    Article  PubMed  PubMed Central  Google Scholar 

  33. Szaflarski JP et al (2021) Intermittent theta burst stimulation (iTBS) for treatment of chronic post-stroke aphasia: results of a pilot randomized, double-blind, sham-controlled trial. Med Sci Monit 27. https://doi.org/10.12659/MSM.931468

  34. Chou T-Y, Wang J-C, Lin M-Y, Tsai P-Y (2022) Low-frequency vs. theta burst transcranial magnetic stimulation for the treatment of chronic non-fluent aphasia in stroke: a proof-of-concept study. Front Aging Neurosci 13:800377. https://doi.org/10.3389/fnagi.2021.800377

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zheng K et al (2023) Continuous theta burst stimulation-induced suppression of the right fronto-thalamic-cerebellar circuit accompanies improvement in language performance in poststroke aphasia: a resting-state fMRI study. Front Aging Neurosci 14:1079023. https://doi.org/10.3389/fnagi.2022.1079023

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yu-Lei X, Shan W, Ju Y, Yu-Han X, Wu Q, Yin-Xu W (2022) Theta burst stimulation versus high-frequency repetitive transcranial magnetic stimulation for poststroke dysphagia: a randomized, double-blind, controlled trial. Medicine (Baltimore) 101(2):e28576. https://doi.org/10.1097/MD.0000000000028576

    Article  CAS  PubMed  Google Scholar 

  37. Rao J et al (2022) Bilateral cerebellar intermittent theta burst stimulation combined with swallowing speech therapy for dysphagia after stroke: a randomized, double-blind, sham-controlled, clinical trial. Neurorehabil Neural Repair 36(7):437–448. https://doi.org/10.1177/15459683221092995

    Article  PubMed  Google Scholar 

  38. Xie Y-L et al (2022) Improvement of post-stroke dysphagia by intermittent theta burst stimulation. Acupunct Electrother Res 47(3):303–313. https://doi.org/10.3727/036012921X16321477053863

    Article  Google Scholar 

  39. Koch G et al (2019) Effect of cerebellar stimulation on gait and balance recovery in patients with hemiparetic stroke: a randomized clinical trial. JAMA Neurol 76(2):170. https://doi.org/10.1001/jamaneurol.2018.3639

    Article  PubMed  Google Scholar 

  40. Y.-J. Xie et al., ‘Cerebellar theta burst stimulation on walking function in stroke patients: a randomized clinical trial’, Front Neurosci, vol. 15, p. 688569, Oct. 2021, doi: https://doi.org/10.3389/fnins.2021.688569.

  41. Li W, Wen Q, Xie Y, Hu A, Wu Q, Wang Y (2022) Improvement of poststroke cognitive impairment by intermittent theta bursts: a double-blind randomized controlled trial. Brain Behav 12(6). https://doi.org/10.1002/brb3.2569

  42. Chu M et al (2022) Efficacy of intermittent theta-burst stimulation and transcranial direct current stimulation in treatment of post-stroke cognitive impairment. J Integr Neurosci 21(5):130. https://doi.org/10.31083/j.jin2105130

    Article  PubMed  Google Scholar 

  43. Pastore-Wapp M et al (2022) Improved gesturing in left-hemispheric stroke by right inferior parietal theta burst stimulation. Front Neurosci 16:998729. https://doi.org/10.3389/fnins.2022.998729

    Article  PubMed  PubMed Central  Google Scholar 

  44. Eggers C, Günther M, Rothwell J, Timmermann L, Ruge D (2015) Theta burst stimulation over the supplementary motor area in Parkinson’s disease. J Neurol 262(2):357–364. https://doi.org/10.1007/s00415-014-7572-8

    Article  CAS  PubMed  Google Scholar 

  45. Brusa L et al (2012) Metabolic changes induced by theta burst stimulation of the cerebellum in dyskinetic Parkinson’s disease patients. Parkinsonism Relat Disord 18(1):59–62. https://doi.org/10.1016/j.parkreldis.2011.08.019

    Article  PubMed  Google Scholar 

  46. Trung J et al (2019) Transcranial magnetic stimulation improves cognition over time in Parkinson’s disease. Parkinsonism Relat Disord 66:3–8. https://doi.org/10.1016/j.parkreldis.2019.07.006

    Article  PubMed  Google Scholar 

  47. Ji G et al (2021) Structural correlates underlying accelerated magnetic stimulation in Parkinson’s disease. Hum Brain Mapp 42(6):1670–1681. https://doi.org/10.1002/hbm.25319

    Article  PubMed  Google Scholar 

  48. Degardin A et al (2012) Effect of intermittent theta-burst stimulation on akinesia and sensorimotor integration in patients with Parkinson’s disease: iTBS in Parkinson’s disease. Eur J Neurosci 36(5):2669–2678. https://doi.org/10.1111/j.1460-9568.2012.08158.x

    Article  PubMed  Google Scholar 

  49. Hill AT, McModie S, Fung W, Hoy KE, Chung S-W, Bertram KL (2020) Impact of prefrontal intermittent theta-burst stimulation on working memory and executive function in Parkinson’s disease: a double-blind sham-controlled pilot study. Brain Res 1726:146506. https://doi.org/10.1016/j.brainres.2019.146506

    Article  CAS  PubMed  Google Scholar 

  50. Tard C, Devanne H, Defebvre L, Delval A (2016) Single session intermittent theta-burst stimulation on the left premotor cortex does not alleviate freezing of gait in Parkinson’s disease. Neurosci Lett 628:1–9. https://doi.org/10.1016/j.neulet.2016.05.061

    Article  CAS  PubMed  Google Scholar 

  51. Sanna A et al (2020) Cerebellar continuous theta burst stimulation reduces levodopa-induced dyskinesias and decreases serum BDNF levels. Neurosci. Lett. 716:134653. https://doi.org/10.1016/j.neulet.2019.134653

    Article  CAS  PubMed  Google Scholar 

  52. Bologna M, Di Biasio F, Conte A, Iezzi E, Modugno N, Berardelli A (2015) Effects of cerebellar continuous theta burst stimulation on resting tremor in Parkinson’s disease. Parkinsonism Relat Disord 21(9):1061–1066. https://doi.org/10.1016/j.parkreldis.2015.06.015

    Article  PubMed  Google Scholar 

  53. Vanbellingen T et al (2016) Theta burst stimulation over premotor cortex in Parkinson’s disease: an explorative study on manual dexterity. J Neural Transm 123(12):1387–1393. https://doi.org/10.1007/s00702-016-1614-6

    Article  PubMed  Google Scholar 

  54. Benninger DH et al (2011) Intermittent theta-burst transcranial magnetic stimulation for treatment of Parkinson disease. Neurology 76(7):601–609. https://doi.org/10.1212/WNL.0b013e31820ce6bb

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lang S et al (2020) Theta-burst stimulation for cognitive enhancement in parkinson’s disease with mild cognitive impairment: a randomized, double-blind, sham-controlled trial. Front Neurol 11:584374. https://doi.org/10.3389/fneur.2020.584374

    Article  PubMed  PubMed Central  Google Scholar 

  56. Brugger F et al (2021) Facilitatory rTMS over the supplementary motor cortex impedes gait performance in parkinson patients with freezing of gait. Brain Sci. 11(3):321. https://doi.org/10.3390/brainsci11030321

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cheng T-C, Huang S-F, Wu S-Y, Lin F-G, Lin W-S, Tsai P-Y (2022) Integration of virtual reality into transcranial magnetic stimulation improves cognitive function in patients with Parkinson’s disease with cognitive impairment: a proof-of-concept study. J Park Dis 12(2):723–736. https://doi.org/10.3233/JPD-212978

    Article  Google Scholar 

  58. He W, Wang J-C, Tsai P-Y (2021) Theta burst magnetic stimulation improves Parkinson’s-related cognitive impairment: a randomised controlled study. Neurorehabil Neural Repair 35(11):986–995. https://doi.org/10.1177/1545968321104131

    Article  PubMed  Google Scholar 

  59. Chung H-K et al (2012) Effectiveness of theta-burst repetitive transcranial magnetic stimulation for treating chronic tinnitus. Audiol Neurotol 17(2):112–120. https://doi.org/10.1159/000330882

    Article  Google Scholar 

  60. Hong S-M, Kim S-K, Seo M-Y, Kang S-Y (2021) Multiple daily rounds of theta-burst stimulation for tinnitus: preliminary results. Medicina (Mex) 57(8):743. https://doi.org/10.3390/medicina57080743

    Article  Google Scholar 

  61. Lorenz I, Müller N, Schlee W, Langguth B, Weisz N (2010) Short-term effects of single repetitive TMS sessions on auditory evoked activity in patients with chronic tinnitus. J Neurophysiol 104(3):1497–1505. https://doi.org/10.1152/jn.00370.2010

    Article  PubMed  Google Scholar 

  62. Godbehere J et al (2019) Treatment of tinnitus using theta burst based repetitive transcranial magnetic stimulation—a single blinded randomized control trial. Otol Neurotol 40(5S):S38–S42. https://doi.org/10.1097/MAO.0000000000002207

    Article  PubMed  Google Scholar 

  63. Schecklmann M et al (2016) Neuronavigated left temporal continuous theta burst stimulation in chronic tinnitus. Restor Neurol Neurosci 34(2):165–175. https://doi.org/10.3233/RNN-150518

    Article  PubMed  Google Scholar 

  64. Forogh B, Yazdi-Bahri S-M, Ahadi T, Fereshtehnejad S-M, Raissi GR (2014) Comparison of two protocols of transcranial magnetic stimulation for treatment of chronic tinnitus: a randomized controlled clinical trial of burst repetitive versus high-frequency repetitive transcranial magnetic stimulation. Neurol Sci 35(2):227–232. https://doi.org/10.1007/s10072-013-1487-5

    Article  PubMed  Google Scholar 

  65. Plewnia C et al (2012) Treatment of chronic tinnitus with theta burst stimulation: a randomized controlled trial. Neurology 78(21):1628–1634. https://doi.org/10.1212/WNL.0b013e3182574ef9

    Article  CAS  PubMed  Google Scholar 

  66. Boutière C et al (2017) Improvement of spasticity following intermittent theta burst stimulation in multiple sclerosis is associated with modulation of resting-state functional connectivity of the primary motor cortices. Mult Scler J 23(6):855–863. https://doi.org/10.1177/1352458516661640

    Article  Google Scholar 

  67. Korzhova J et al (2019) High-frequency repetitive transcranial magnetic stimulation and intermittent theta-burst stimulation for spasticity management in secondary progressive multiple sclerosis. Eur J Neurol 26(4):680–e44. https://doi.org/10.1111/ene.13877

    Article  CAS  PubMed  Google Scholar 

  68. Mori F et al (2010) Effects of intermittent theta burst stimulation on spasticity in patients with multiple sclerosis: iTBS for spasticity in MS. Eur J Neurol 17(2):295–300. https://doi.org/10.1111/j.1468-1331.2009.02806.x

    Article  CAS  PubMed  Google Scholar 

  69. Mori F et al (2011) Transcranial magnetic stimulation primes the effects of exercise therapy in multiple sclerosis. J Neurol 258(7):1281–1287. https://doi.org/10.1007/s00415-011-5924-1

    Article  PubMed  Google Scholar 

  70. Tramontano M et al (2020) Cerebellar intermittent theta-burst stimulation combined with vestibular rehabilitation improves gait and balance in patients with multiple sclerosis: a preliminary double-blind randomized controlled trial. Cerebellum 19(6):897–901. https://doi.org/10.1007/s12311-020-01166-y

    Article  PubMed  Google Scholar 

  71. Cheng M et al (2023) Analgesic efficacy of theta-burst stimulation for postoperative pain. Clin Neurophysiol 149:81–87. https://doi.org/10.1016/J.CLINPH.2023.02.174

    Article  PubMed  Google Scholar 

  72. Lefaucheur J-P et al (2012) Analgesic effects of repetitive transcranial magnetic stimulation of the motor cortex in neuropathic pain: influence of theta burst stimulation priming: analgesia induced by tbs-primed rTMS over m1. Eur J Pain 16(10):1403–1413. https://doi.org/10.1002/J.1532-2149.2012.00150.X

    Article  PubMed  Google Scholar 

  73. Kim JK, Park HS, Bae JS, Jeong YS, Jung KJ, Lim JY (2020) Effects of multi-session intermittent theta burst stimulation on central neuropathic pain: a randomized controlled trial. Neurorehabilitation 46(1):127–134. https://doi.org/10.3233/nre-192958

    Article  PubMed  Google Scholar 

  74. André-Obadia N, Magnin M, Garcia-Larrea L (2021) Theta-burst versus 20 hz repetitive transcranial magnetic stimulation in neuropathic pain: a head-to-head comparison. Clin Neurophysiol 132(10):2702–2710. https://doi.org/10.1016/J.CLINPH.2021.05.022

    Article  PubMed  Google Scholar 

  75. Kohútová B, Fricová J, Klírová M, Novák T, Rokyta R (2017) Theta burst stimulation in the treatment of chronic orofacial pain: a randomized controlled trial. Physiol Res:1041–1047. https://doi.org/10.33549/PHYSIOLRES.933474

  76. Sahu AK, Sinha VK, Goyal N (2019) Effect of adjunctive intermittent theta-burst repetitive transcranial magnetic stimulation as a prophylactic treatment in migraine patients: a double-blind sham-controlled study. Indian J Psychiatry 61(2):139–145. https://doi.org/10.4103/PSYCHIATRY.iNDIANjpSYCHIATRY_472_18

    Article  PubMed  PubMed Central  Google Scholar 

  77. Bradnam L, McDonnell M, Ridding M (2016) Cerebellar intermittent theta-burst stimulation and motor control training in individuals with cervical dystonia. Brain Sci 6(4):56. https://doi.org/10.3390/BRAINSCI6040056

    Article  PubMed  PubMed Central  Google Scholar 

  78. Huang Y-Z et al (2012) Modulation of the disturbed motor network in dystonia by multisession suppression of premotor cortex. PLoS One 7(10):E47574. https://doi.org/10.1371/JOURNAL.PONE.0047574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shi Y et al (2023) Efficacy of cerebellar transcranial magnetic stimulation in spinocerebellar ataxia type 3: a randomized, single-blinded, controlled trial. J Neurol. https://doi.org/10.1007/S00415-023-11848-2

  80. Sanna A et al (2022) Therapeutic use of cerebellar intermittent theta burst stimulation (itbs) in a Sardinian family affected by spinocerebellar ataxia 38 (sca 38). Cerebellum 21(4):623–631. https://doi.org/10.1007/S12311-021-01313-Z

    Article  CAS  PubMed  Google Scholar 

  81. Bologna M et al (2015) Cerebellar continuous theta burst stimulation in essential tremor. Cerebellum 14(2):133–141. https://doi.org/10.1007/S12311-014-0621-0

    Article  MathSciNet  PubMed  Google Scholar 

  82. Wu SW et al (2014) Functional mri-navigated repetitive transcranial magnetic stimulation over supplementary motor area in chronic tic disorders. Brain Stimulat. 7(2):212–218. https://doi.org/10.1016/J.BRS.2013.10.005

    Article  Google Scholar 

  83. Pilotto A et al (2021) Cerebellar rTMS in PSP: a double-blind sham-controlled study using mobile health technology. Cerebellum 20(4):662–666. https://doi.org/10.1007/S12311-021-01239-6

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Calina Zdrenghea.

Ethics declarations

Ethics approval

None.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Our search strategy is: ‘theta-burst,’ the Boolean terms ‘AND,’ ‘OR,’ followed by one keyword from this list: stroke, pain, movement disorders, traumatic brain injury, multiple sclerosis, epilepsy, cognitive dysfunctions, tinnitus and disorders of consciousness.

Appendix B

Tables illustrating collected study data.

Table 1 Study data regarding TBS protocols and effects on stroke patients
Table 2 Study data regarding TBS protocol and effects on Parkinson’s disease patients
Table 3 Study data regarding TBS protocol and effects on tinnitus patients
Table 4 Study data regarding TBS protocol and effects on multiple sclerosis patients
Table 5 Study data regarding TBS protocol and effects on chronic pain patients
Table 6 Study data regarding TBS protocol and effects on patients diagnosed with other pathologies

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jemna, N., Zdrenghea, A.C., Frunza, G. et al. Theta-burst stimulation as a therapeutic tool in neurological pathology: a systematic review. Neurol Sci 45, 911–940 (2024). https://doi.org/10.1007/s10072-023-07144-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-023-07144-6

Keywords

Navigation