Skip to main content

Advertisement

Log in

Identifying the mechanism of action of the Kv7 channel opener, retigabine in the treatment of epilepsy

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Epilepsy is characterized by recurrent epileptic seizures caused by high levels of neuronal excitability in the brain. Voltage-sensitive K+ channels (Kv) of the Kv7 (KCNQ) family encoded by the KCNQ gene are involved in a wide range of cellular processes, i.e., KCNQ2 and KCNQ3 channels mediate M-currents to inhibit neuronal excitability and reduce transmitter release throughout the nervous system. Thus, as a positive allosteric modulator (or opener) of KCNQ channels, retigabine has been the only clinically approved anti-seizure medication that acts on the KCNQ channels. This review discusses the biochemical mechanisms about how retigabine acts on Kv7 channels, significance in neuronal pathophysiology, preclinical efficacy, and clinical stage of development. Additional efforts are being made to emphasize the possible benefits and drawbacks of retigabine compared to currently available medications for treatment-resistant epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Noebels JL (1996) Targeting epilepsy genes. Neuron 16:241–244

    Article  CAS  PubMed  Google Scholar 

  2. Wu Y-J, Dworetzky SI (2005) Recent developments on KCNQ potassium channel openers. Curr Med Chem 12:453–460

    Article  CAS  Google Scholar 

  3. Lucke-Wold BP, Nguyen L, Turner RC et al (2015) Traumatic brain injury and epilepsy: underlying mechanisms leading to seizure. Seizure 33:13–23

    Article  PubMed  Google Scholar 

  4. Biervert C, Schroeder BC, Kubisch C, Berkovic SF, Propping P, Jentsch TJ, Steinlein OK (1998) A potassium channel mutation in neonatal human epilepsy. Science 279:403–406

    Article  CAS  PubMed  Google Scholar 

  5. Liu R, Zhang Z, Liu H et al (2013) Human β-defensin 2 is a novel opener of Ca2+-activated potassium channels and induces vasodilation and hypotension in monkeys. Hypertension 62:415–425

    Article  CAS  PubMed  Google Scholar 

  6. Yu FH, Catterall WA (2004) The VGL-chanome: a protein superfamily specialized for electrical signaling and ionic homeostasis. Sci STKE 2004:re15

    Article  PubMed  Google Scholar 

  7. Anderson PAV, Greenberg RM (2001) Phylogeny of ion channels: clues to structure and function. Comp Biochem Physiol Part B Biochem Mol Biol 129:17–28

    Article  CAS  Google Scholar 

  8. Köhling R, Wolfart J (2016) Potassium channels in epilepsy. Cold Spring Harb Perspect Med 6:a022871

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pan Z, Kao T, Horvath Z, Lemos J, Sul JY, Cranstoun SD, Bennett V, Scherer SS, Cooper EC (2006) A Common ankyrin-G-based mechanism retains KCNQ and NaV channels at Electrically Active Domains of the Axon. J Neurosci 26:2599–2613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Trimmer JS (2015) Subcellular localization of K+ channels in mammalian brain neurons: remarkable precision in the midst of extraordinary complexity. Neuron 85:238–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bocksteins E (2016) Kv5, Kv6, Kv8, and Kv9 subunits: no simple silent bystanders. J Gen Physiol 147:105–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Serrano-Albarrás A (2018) Heteromeric composition of the Kv 1.3 channelosome= Composició heteromèrica del canalosoma Kv1. 3. Dissertation, Universitat de Barcelona

  13. Brown DA, Adams PR (1980) Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature 283:673–676

    Article  CAS  PubMed  Google Scholar 

  14. Halliwell JV, Adams PR (1982) Voltage-clamp analysis of muscarinic excitation in hippocampal neurons. Brain Res 250:71–92

    Article  CAS  PubMed  Google Scholar 

  15. Schroeder BC, Hechenberger M, Weinreich F et al (2000) KCNQ5, a novel potassium channel broadly expressed in brain, mediates M-type currents. J Biol Chem 275:24089–24095

    Article  CAS  PubMed  Google Scholar 

  16. Schroeder BC, Kubisch C, Stein V, Jentsch TJ (1998) Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy. Nature 396:687–690

    Article  CAS  PubMed  Google Scholar 

  17. Delmas P, Brown DA (2005) Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat Rev Neurosci 6:850–862

    Article  CAS  PubMed  Google Scholar 

  18. Cooper EC, Aldape KD, Abosch A et al (2000) Colocalization and coassembly of two human brain M-type potassium channel subunits that are mutated in epilepsy. Proc Natl Acad Sci 97:4914–4919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pettit RE, Fenichel GM (1980) Benign familial neonatal seizures. Arch Neurol 37:47–48

    Article  CAS  PubMed  Google Scholar 

  20. Singh NA, Otto JF, Jill Dahle E et al (2008) Mouse models of human KCNQ2 and KCNQ3 mutations for benign familial neonatal convulsions show seizures and neuronal plasticity without synaptic reorganization. J Physiol 586:3405–3423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Volkers L, Rook MB, Das JHG et al (2009) Functional analysis of novel KCNQ2 mutations found in patients with benign familial neonatal convulsions. Neurosci Lett 462:24–29

    Article  CAS  PubMed  Google Scholar 

  22. Boscia F, Annunziato L, Taglialatela M (2006) Retigabine and flupirtine exert neuroprotective actions in organotypic hippocampal cultures. Neuropharmacology 51:283–294

    Article  CAS  PubMed  Google Scholar 

  23. Millichap JJ, Cooper EC (2012) KCNQ2 Potassium channel epileptic encephalopathy syndrome: divorce of an electro-mechanical couple? KCNQ2 potassium channel epileptic encephalopathy syndrome: divorce of an electro-mechanical couple? Epilepsy Curr 12:150–152

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lauritano A, Moutton S, Longobardi E et al (2019) A novel homozygous KCNQ3 loss-of-function variant causes non-syndromic intellectual disability and neonatal-onset pharmacodependent epilepsy. Epilepsia Open 4:464–475

    Article  PubMed  PubMed Central  Google Scholar 

  25. Carvill GL, Heavin SB, Yendle SC et al (2013) Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nat Genet 45:825–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Miceli F, Soldovieri MV, Ambrosino P et al (2015) Early-onset epileptic encephalopathy caused by gain-of-function mutations in the voltage sensor of Kv7. 2 and Kv7. 3 potassium channel subunits. J Neurosci 35:3782–3793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Millichap JJ, Miceli F, De Maria M et al (2017) Infantile spasms and encephalopathy without preceding neonatal seizures caused by KCNQ2 R198Q, a gain-of-function variant. Epilepsia 58:e10–e15

    Article  CAS  PubMed  Google Scholar 

  28. Mulkey SB, Ben-Zeev B, Nicolai J et al (2017) Neonatal nonepileptic myoclonus is a prominent clinical feature of KCNQ 2 gain-of-function variants R201C and R201H. Epilepsia 58:436–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sands TT, Miceli F, Lesca G et al (2019) Autism and developmental disability caused by KCNQ3 gain-of-function variants. Ann Neurol 86:181–192

    Article  CAS  PubMed  Google Scholar 

  30. Olson HE, Kelly M, LaCoursiere CM et al (2017) Genetics and genotype–phenotype correlations in early onset epileptic encephalopathy with burst suppression. Ann Neurol 81:419–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Singh NA, Westenskow P, Charlier C et al (2003) KCNQ2 and KCNQ3 potassium channel genes in benign familial neonatal convulsions: expansion of the functional and mutation spectrum. Brain 126:2726–2737

    Article  PubMed  Google Scholar 

  32. Niday Z, Tzingounis AV (2018) Potassium channel gain of function in epilepsy: an unresolved paradox. Neurosci 24:368–380

    CAS  Google Scholar 

  33. Guerrini R, Conti V, Mantegazza M et al (2023) Developmental and epileptic encephalopathies: from genetic heterogeneity to phenotypic continuum. Physiol Rev 103:433–513

    Article  CAS  PubMed  Google Scholar 

  34. Rogawski MA (2000) KCNQ2/KCNQ3 K+ channels and the molecular pathogenesis of epilepsy: implications for therapy. Trends Neurosci 23:393–398

    Article  CAS  PubMed  Google Scholar 

  35. Cox R, McGowran M (2002) Society for Neuroscience-32nd Annual Meeting. IDrugs Investig drugs J 5:1095–1098

    Google Scholar 

  36. Friedel HA, Fitton A (1993) Flupirtine Drugs 45:548–569

    Article  CAS  PubMed  Google Scholar 

  37. Rundfeldt C, Netzer R (2000) The novel anticonvulsant retigabine activates M-currents in Chinese hamster ovary-cells tranfected with human KCNQ2/3 subunits. Neurosci Lett 282:73–76

    Article  CAS  PubMed  Google Scholar 

  38. Main MJ, Cryan JE, Dupere JRB et al (2000) Modulation of KCNQ2/3 potassium channels by the novel anticonvulsant retigabine. Mol Pharmacol 58:253–262

    Article  CAS  PubMed  Google Scholar 

  39. Mora G, Tapia R (2005) Effects of retigabine on the neurodegeneration and extracellular glutamate changes induced by 4-aminopyridine in rat hippocampus in vivo. Neurochem Res 30:1557–1565

    Article  CAS  PubMed  Google Scholar 

  40. Rundfeldt C (1999) Characterization of the K+ channel opening effect of the anticonvulsant retigabine in PC12 cells. Epilepsy Res 35:99–107

    Article  CAS  PubMed  Google Scholar 

  41. Callaghan B, Schlesinger M, Rodemer W et al (2011) Remission and relapse in a drug-resistant epilepsy population followed prospectively. Epilepsia 52:619–626

    Article  PubMed  PubMed Central  Google Scholar 

  42. Patsalos PN, Perucca E (2003) Clinically important drug interactions in epilepsy: general features and interactions between antiepileptic drugs. Lancet Neurol 2:347–356

    Article  CAS  PubMed  Google Scholar 

  43. Lange W, Geißendörfer J, Schenzer A et al (2009) Refinement of the binding site and mode of action of the anticonvulsant retigabine on KCNQ K+ channels. Mol Pharmacol 75:272–280

    Article  CAS  PubMed  Google Scholar 

  44. Tatulian L, Delmas P, Abogadie FC, Brown DA (2001) Activation of expressed KCNQ potassium currents and native neuronal M-type potassium currents by the anti-convulsant drug retigabine. J Neurosci 21:5535–5545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Porter RJ, Nohria V, Rundfeldt C (2007) Retigabine. Neurotherapeutics 4:149–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Klafehn CW (2016) Summaries of safety labeling changes approved by the FDA: boxed warnings highlights. Hosp Pharm 51:688–691

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kapetanovic IM, Yonekawa WD, Kupferberg HJ (1995) The effects of D-23129, a new experimental anticonvulsant drug, on neurotransmitter amino acids in the rat hippocampus in vitro. Epilepsy Res 22:167–173

    Article  CAS  PubMed  Google Scholar 

  48. Rundfeldt C (1995) Multiple actions of the new anticonvulsant D-23129 on voltage-gated inward currents and GABA-induced currents in cultured neuronal cells. Naunyn Schmiedeberg's Arch Pharmacol 351:R160

    Google Scholar 

  49. Rundfeldt C, Netzer R (2000) Investigations into the mechanism of action of the new anticonvulsant retigabine-interaction with GABAergic and glutamatergic neurotransmission and with voltage gated ion channels. Arzneimittelforschung 50:1063–1070

    CAS  PubMed  Google Scholar 

  50. Jentsch TJ (2000) Neuronal KCNQ potassium channels: physislogy and role in disease. Nat Rev Neurosci 1:21–30

    Article  CAS  PubMed  Google Scholar 

  51. Yeung SYM, Lange W, Schwake M, Greenwood IA (2008) Expression profile and characterisation of a truncated KCNQ5 splice variant. Biochem Biophys Res Commun 371:741–746

    Article  CAS  PubMed  Google Scholar 

  52. Rundfeldt C (1997) The new anticonvulsant retigabine (D-23129) acts as an opener of K+ channels in neuronal cells. Eur J Pharmacol 336:243–249

    Article  CAS  PubMed  Google Scholar 

  53. Patsalos PN, Berry DJ (2012) Pharmacotherapy of the third-generation AEDs: lacosamide, retigabine and eslicarbazepine acetate. Expert Opin Pharmacother 13:699–715

    Article  CAS  PubMed  Google Scholar 

  54. Hempel R, Schupke H, McNeilly PJ et al (1999) Metabolism of retigabine (D-23129), a novel anticonvulsant. Drug Metab Dispos 27:613–622

    CAS  PubMed  Google Scholar 

  55. Borlak J, Gasparic A, Locher M et al (2006) N-Glucuronidation of the antiepileptic drug retigabine: results from studies with human volunteers, heterologously expressed human UGTs, human liver, kidney, and liver microsomal membranes of Crigler-Najjar type II. Metabolism 55:711–721

    Article  CAS  PubMed  Google Scholar 

  56. Hermann R, Borlak J, Munzel U et al (2006) The role of Gilbert’s syndrome and frequent NAT2 slow acetylation polymorphisms in the pharmacokinetics of retigabine. Pharm J 6:211–219

    CAS  Google Scholar 

  57. Plosker GL, Scott LJ (2006) Retigabine. CNS Drugs 20:601–608

    Article  CAS  PubMed  Google Scholar 

  58. Sirven JI, Noe K, Hoerth M, Drazkowski J (2012) Antiepileptic drugs 2012: recent advances and trends. In: Mayo Clinic Proceedings. Elsevier, pp 879–889

    Google Scholar 

  59. Large CH, Sokal DM, Nehlig A et al (2012) The spectrum of anticonvulsant efficacy of retigabine (ezogabine) in animal models: implications for clinical use. Epilepsia 53:425–436

    Article  CAS  PubMed  Google Scholar 

  60. Otto JF, Kimball MM, Wilcox KS (2002) Effects of the anticonvulsant retigabine on cultured cortical neurons: changes in electroresponsive properties and synaptic transmission. Mol Pharmacol 61:921–927

    Article  CAS  PubMed  Google Scholar 

  61. Straub H, Köhling R, Höhling J-M et al (2001) Effects of retigabine on rhythmic synchronous activity of human neocortical slices. Epilepsy Res 44:155–165

    Article  CAS  PubMed  Google Scholar 

  62. Köhling R, Lücke A, Straub H et al (1998) Spontaneous sharp waves in human neocortical slices excised from epileptic patients. Brain J Neurol 121:1073–1087

    Article  Google Scholar 

  63. D’Adamo MC, Catacuzzeno L, Di Giovanni G et al (2013) K+ channelepsy: progress in the neurobiology of potassium channels and epilepsy. Front Cell Neurosci 7:134

    PubMed  PubMed Central  Google Scholar 

  64. Porter RJ, Partiot A, Sachdeo R et al (2007) Randomized, multicenter, dose-ranging trial of retigabine for partial-onset seizures. Neurology 68:1197–1204

    Article  CAS  PubMed  Google Scholar 

  65. Clark S, Antell A, Kaufman K (2015) New antiepileptic medication linked to blue discoloration of the skin and eyes. Ther Adv drug Saf 6:15–19

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ihara Y, Tomonoh Y, Deshimaru M et al (2016) Retigabine, a Kv7. 2/Kv7. 3-channel opener, attenuates drug-induced seizures in knock-in mice harboring Kcnq2 mutations. PLoS One 11:e0150095

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kuersten M, Tacke M, Gerstl L et al (2020) Antiepileptic therapy approaches in KCNQ2 related epilepsy: a systematic review. Eur J Med Genet 63:103628

    Article  CAS  PubMed  Google Scholar 

  68. Rose BJ (2017) Summaries of safety labeling changes approved by the FDA: boxed warnings highlights October-December 2016. Hosp Pharm 52:153–154

    Article  PubMed  PubMed Central  Google Scholar 

  69. Namdari R, Luzon C, Cadieux JA et al (2022) Pharmacokinetics of XEN496, a novel pediatric formulation of ezogabine, under fed and fasted conditions: a phase 1 trial. Neurol Ther 11:781–796

    Article  PubMed  PubMed Central  Google Scholar 

  70. Sun L, Liu R, Yang H, Yu T, Wu J, Wang Q (2022) Characteristics of epileptiform spike-wave discharges and chronic histopathology in controlled cortical impact model of Sprague–Dawley rats. Neurochem Res 47(12):3615–3626

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (No. 81870935) and the Scientific Research Found of Wuhan University of Technology (No. 40122070) to WJ.

Author information

Authors and Affiliations

Authors

Contributions

A.Z. and R.L conducted the literature review and wrote the initial draft of the manuscript. W.H., H.M., W.Q., W.Y., and SC made preliminary revisions to the manuscript. J.W. made critical revisions and approved the final version of the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jianping Wu.

Ethics declarations

Conflict of interest

None

Ethical approval

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Aqeela Zahra and Ru Liu contributed to this work equally.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahra, ., Liu, R., Wang, J. et al. Identifying the mechanism of action of the Kv7 channel opener, retigabine in the treatment of epilepsy. Neurol Sci 44, 3819–3825 (2023). https://doi.org/10.1007/s10072-023-06955-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-023-06955-x

Keywords

Navigation