Skip to main content

Advertisement

Log in

Risk factors for post-COVID cognitive dysfunctions: the impact of psychosocial vulnerability

  • COVID-19
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

Cognitive dysfunction is a well-established manifestation of the post-COVID syndrome. Psychological vulnerability to stressors can modify disease trajectories, causing long-term risk for negative outcomes. Nonetheless, how premorbid risk factors and response to stressor affect neuropsychological changes is still incompletely understood. In this study, we explored the impact of psychosocial variables on cognitive functioning in a post-COVID sample.

Methods

All subjects were submitted to a comprehensive neuropsychological battery and an assessment of perceived loneliness, post-traumatic stress, and changes in anxiety and depression levels. A social vulnerability index was also calculated. The set of psycho-social variables was reduced to two Principal Component Analysis (PCA) components: distress and isolation.

Results

Forty-five percent of individuals showed cognitive impairments, with predominant memory and executive deficits. Post-traumatic stress disorder was clinically relevant in 44% of the sample. Social vulnerability scores of the sample were comparable to those of general population. The individual performance in learning and response initiation/suppression was directly related to distress component, encasing anxiety, stress, and depression measures.

Conclusion

These findings suggest that psychosocial assessment of post-COVID patients can detect fragile individuals at risk of cognitive impairments. Dedicated psychological support services may play a useful role in the prevention of post-COVID cognitive dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The dataset of this study can be found in the Zenodo repository at the following doi: 10.5281/zenodo.7872417.

References

  1. Kamal M, Abo Omirah M, Hussein A, Saeed H (2021) Assessment and characterisation of post-COVID-19 manifestations. Int J Clin Pract 75:e13746. https://doi.org/10.1111/ijcp.13746

    Article  CAS  PubMed  Google Scholar 

  2. WHO Coronavirus (COVID-19) (2023) Dashboard. World Health Organization. https://covid19.who.int. Accessed 20 Feb 2023

  3. Díez-Cirarda M, Yus M, Gómez-Ruiz N et al (2022) Multimodal neuroimaging in post-COVID syndrome and correlation with cognition. Brain 146(5):2142–2152. https://doi.org/10.1093/brain/awac384

  4. Munipalli B, Paul S, Mohabbat A et al (2023) Clinical differences in symptomology, characteristics, and risk factors in patients with post-acute sequelae of COVID-19: an experience from a tertiary-care academic center. J Invest Med 71(5):495–501. https://doi.org/10.1177/10815589231153604

    Article  Google Scholar 

  5. Antar AAR, Yu T, Demko ZO et al (2023) Long COVID brain fog and muscle pain are associated with longer time to clearance of SARS-CoV-2 RNA from the upper respiratory tract during acute infection. MedRxiv Prepr Serv Health Sci 2023.01.18.23284742. https://doi.org/10.1101/2023.01.18.23284742

  6. Huerne K, Filion KB, Grad R et al (2023) Epidemiological and clinical perspectives of long COVID syndrome. Am J Med Open 9:100033. https://doi.org/10.1016/j.ajmo.2023.100033

    Article  PubMed  PubMed Central  Google Scholar 

  7. Delgado-Alonso C, Valles-Salgado M, Delgado-Álvarez A et al (2022) Cognitive dysfunction associated with COVID-19: a comprehensive neuropsychological study. J Psychiatr Res 150:40–46. https://doi.org/10.1016/j.jpsychires.2022.03.033

    Article  PubMed  PubMed Central  Google Scholar 

  8. Prabhakaran D, Day G, Munipalli B et al (2023) Neurophenotypes of COVID-19: risk factors and recovery outcomes. Preprint Res Sq rs.3.rs-2363210. https://doi.org/10.21203/rs.3.rs-2363210/v1

  9. Matias-Guiu JA, Herrera E, González-Nosti M et al (2023) Development of criteria for cognitive dysfunction in post-COVID syndrome: the IC-CoDi-COVID approach. Psychiatry Res 319:115006. https://doi.org/10.1016/j.psychres.2022.115006

    Article  CAS  PubMed  Google Scholar 

  10. Miskowiak K, Johnsen S, Sattler S et al (2021) Cognitive impairments four months after COVID-19 hospital discharge: pattern, severity and association with illness variables. Eur Neuropsychopharmacol 46:39–48. https://doi.org/10.1016/j.euroneuro.2021.03.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Reza-Zaldívar EE, Hernández-Sapiéns MA, Minjarez B et al (2020) Infection mechanism of SARS-COV-2 and its implication on the nervous system. Front Immunol 11:621735. https://doi.org/10.3389/fimmu.2020.621735

    Article  CAS  PubMed  Google Scholar 

  12. Schirinzi T, Lattanzi R, Maftei D et al (2023) Substance P and Prokineticin-2 are overexpressed in olfactory neurons and play differential roles in persons with persistent post-COVID-19 olfactory dysfunction. Brain Behav Immun 108:302–308. https://doi.org/10.1016/j.bbi.2022.12.017

    Article  CAS  PubMed  Google Scholar 

  13. Cerami C, Santi GC, Galandra C et al (2020) COVID-19 outbreak in Italy: are we ready for the psychosocial and the economic crisis? Baseline Findings From the PsyCovid Study. Front Psych 11:556. https://doi.org/10.3389/fpsyt.2020.00556

    Article  Google Scholar 

  14. Cerami C, Canevelli M, Santi GC et al (2021) Identifying frail populations for disease risk prediction and intervention planning in the COVID-19 era: a focus on social isolation and vulnerability. Front Psych 12:626682. https://doi.org/10.3389/fpsyt.2021.626682

    Article  Google Scholar 

  15. Cerami C, Crespi C, Bottiroli S et al (2021) High perceived isolation and reduced social support affect headache impact levels in migraine after the Covid-19 outbreak: A cross sectional survey on chronic and episodic patients. Cephalalgia 41:1437–1446. https://doi.org/10.1177/03331024211027568

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wei G, Diehl-Schmid J, Matias-Guiu JA et al (2022) The effects of the COVID-19 pandemic on neuropsychiatric symptoms in dementia and carer mental health: an international multicentre study. Sci Rep 12:2418. https://doi.org/10.1038/s41598-022-05687-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Harrison PJ, Taquet M (2023) Neuropsychiatric disorders following SARS-CoV-2 infection. Brain 146:2241–2247. https://doi.org/10.1093/brain/awad008

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rival G, Chalbet S, Dupont C et al (2023) Post-traumatic stress among COVID-19 survivors: a descriptive study of hospitalized first-wave survivors. Can J Respir Ther 59:20–25. https://doi.org/10.29390/cjrt-2022-017

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sattler DN, Bishkhorloo B, Lawley KA et al (2023) Stigma, post-traumatic stress, and COVID-19 vaccination intent in Mongolia, India, and the United States. Int J Environ Res Public Health 20:2084. https://doi.org/10.3390/ijerph20032084

    Article  PubMed  PubMed Central  Google Scholar 

  20. Delgado-Alonso C, Valles-Salgado M, Delgado-Álvarez A et al (2022) Examining association of personality characteristics and neuropsychiatric symptoms in post-COVID syndrome. Brain Sci 12:265. https://doi.org/10.3390/brainsci12020265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Measso G, Cavarzeran F, Zappalà G et al (1993) The Mini-Mental State Examination: normative study of an Italian random sample. Dev Neuropsychol 9:77–85. https://doi.org/10.1080/87565649109540545

    Article  Google Scholar 

  22. Caltagirone C, Gainotti G, Carlesimo GA, Parnetti L (1995) Batteria per la valutazione del deterioramento mentale: I. Descrizione di uno strumento di diagnosi neuropsicologica. [The Mental Deterioration Battery: I. Description of a neuropsychological diagnostic instrument.]. Arch Psicol Neurol Psichiatr 56:461–470

    Google Scholar 

  23. Caffarra P, Vezzadini G, Dieci F et al (2002) Rey-Osterrieth complex figure: normative values in an Italian population sample. Neurol Sci 22:443–447. https://doi.org/10.1007/s100720200003

    Article  CAS  PubMed  Google Scholar 

  24. Spitoni GF, Bevacqua S, Cerini C et al (2018) Normative data for the Hayling and Brixton tests in an Italian population. Arch Clin Neuropsychol 33:466–476. https://doi.org/10.1093/arclin/acx072

    Article  PubMed  Google Scholar 

  25. Giovagnoli AR, Del Pesce M, Mascheroni S et al (1996) Trail making test: normative values from 287 normal adult controls. Ital J Neurol Sci 17:305–309. https://doi.org/10.1007/BF01997792

    Article  CAS  PubMed  Google Scholar 

  26. Appollonio I, Leone M, Isella V et al (2005) The Frontal Assessment Battery (FAB): normative values in an Italian population sample. Neurol Sci 26:108–116. https://doi.org/10.1007/s10072-005-0443-4

    Article  CAS  PubMed  Google Scholar 

  27. Carlesimo GA, Caltagirone C, Gainotti G (1996) The Mental Deterioration Battery: normative data, diagnostic reliability and qualitative analyses of cognitive impairment. The Group for the Standardization of the Mental Deterioration Battery. Eur Neurol 36:378–384. https://doi.org/10.1159/000117297

    Article  CAS  PubMed  Google Scholar 

  28. Novelli G, Papagno C, Capitani E et al (1986) Tre test clinici di ricerca e produzione lessicale. Taratura su sogetti normali. [Three clinical tests to research and rate the lexical performance of normal subjects.]. Arch Psicol Neurol Psichiatr 47:477–506

    Google Scholar 

  29. Chipi E, Montanucci C, Eusebi P et al (2019) The Italian version of Cognitive Function Instrument (CFI) for tracking changes in healthy elderly: results at 1-year follow-up. Neurol Sci 40:2147–2153. https://doi.org/10.1007/s10072-019-03960-x

    Article  PubMed  Google Scholar 

  30. Zammuner V (2008) Italians’ social and emotional loneliness: the results of five studies. Int J Humanit Soc Sci 3:108–120. https://doi.org/10.5281/zenodo.1056172

    Article  Google Scholar 

  31. Bottesi G, Ghisi M, Altoè G et al (2015) The Italian version of the Depression Anxiety Stress Scales-21: factor structure and psychometric properties on community and clinical samples. Compr Psychiatry 60:170–181. https://doi.org/10.1016/j.comppsych.2015.04.005

    Article  PubMed  Google Scholar 

  32. Passardi S, Peyk P, Rufer M et al (2019) Facial mimicry, facial emotion recognition and alexithymia in post-traumatic stress disorder. Behav Res Ther 122:103436. https://doi.org/10.1016/j.brat.2019.103436

    Article  PubMed  Google Scholar 

  33. Edwards ER (2022) Posttraumatic stress and alexithymia: a meta-analysis of presentation and severity. Psychol Trauma Theory Res Pract Policy 14:1192–1200. https://doi.org/10.1037/tra0000539

    Article  Google Scholar 

  34. Brooks SK, Dunn R, Amlôt R et al (2016) Social and occupational factors associated with psychological distress and disorder among disaster responders: a systematic review. BMC Psychol 4:18. https://doi.org/10.1186/s40359-016-0120-9

    Article  PubMed  PubMed Central  Google Scholar 

  35. Brooks SK, Dunn R, Amlôt R et al (2018) A systematic, thematic review of social and occupational factors associated with psychological outcomes in healthcare employees during an infectious disease outbreak. J Occup Environ Med 60:248–257. https://doi.org/10.1097/JOM.0000000000001235

    Article  PubMed  Google Scholar 

  36. Osman A, Wong JL, Bagge CL et al (2012) The Depression Anxiety Stress Scales-21 (DASS-21): further examination of dimensions, scale reliability, and correlates. J Clin Psychol 68:1322–1338. https://doi.org/10.1002/jclp.21908

    Article  PubMed  Google Scholar 

  37. Weiss DS, Marmar CR (1997) The impact of event scale—revised. In: Assessing psychological trauma and PTSD. The Guilford Press, New York, NY, US, pp 399–411

    Google Scholar 

  38. Beck JG, Grant DM, Read JP et al (2008) The impact of event scale –revised: psychometric properties in a sample of motor vehicle accident survivors. J Anxiety Disord 22:187–198. https://doi.org/10.1016/j.janxdis.2007.02.007

    Article  PubMed  Google Scholar 

  39. Capitani E, Laiacona M (1997) Composite neuropsychological batteries and demographic correction: standardization based on equivalent scores, with a review of published data. The Italian Group for the Neuropsychological Study of Ageing. J Clin Exp Neuropsychol 19:795–809. https://doi.org/10.1080/01688639708403761

    Article  CAS  PubMed  Google Scholar 

  40. Bryant FB, Yarnold PR (1995) Principal-components analysis and exploratory and confirmatory factor analysis. In: Reading and understanding multivariate statistics. American Psychological Association, Washington, DC, pp 99–136

  41. Abdi H, Williams L (2010) Principal component analysis. Wiley Interdiscip Rev Comput Stat 2:433–459. https://doi.org/10.1002/wics.101

    Article  Google Scholar 

  42. Global COVID-19 Clinical Platform Case Report Form (CRF) (2021) For Post COVID condition (Post COVID-19 CRF). World Health Organization. https://www.who.int/publications-detail-redirect/global-covid-19-clinical-platform-case-report-form-. Accessed 20 Feb 2023

  43. WHO Publications (2023) World Health Organization. https://www.who.int/publications. Accessed 20 Feb 2023

  44. Miskowiak K, Fugledalen L, Jespersen A et al (2022) Trajectory of cognitive impairments over 1 year after COVID-19 hospitalisation: pattern, severity, and functional implications. Eur Neuropsychopharmacol 59:82–92. https://doi.org/10.1016/j.euroneuro.2022.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Giurgi-Oncu C, Tudoran C, Pop GN et al (2021) Cardiovascular abnormalities and mental health difficulties result in a reduced quality of life in the post-acute COVID-19 syndrome. Brain Sci 11:1456. https://doi.org/10.3390/brainsci11111456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Taquet M, Geddes JR, Husain M et al (2021) 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiatry 8:416–427. https://doi.org/10.1016/S2215-0366(21)00084-5

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zigmond AS, Snaith RP (1983) The Hospital Anxiety and Depression Scale. Acta Psychiatr Scand 67:361–370. https://doi.org/10.1111/j.1600-0447.1983.tb09716.x

    Article  CAS  PubMed  Google Scholar 

  48. Ferrando SJ, Dornbush R, Lynch S et al (2022) Neuropsychological, medical, and psychiatric findings after recovery from acute COVID-19: a cross-sectional study. J Acad Consult Liaison Psychiatry 63:474–484. https://doi.org/10.1016/j.jaclp.2022.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  49. Calabria M, García-Sánchez C, Grunden N et al (2022) Post-COVID-19 fatigue: the contribution of cognitive and neuropsychiatric symptoms. J Neurol 269:3990–3999. https://doi.org/10.1007/s00415-022-11141-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Livingston G, Huntley J, Sommerlad A et al (2020) Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 396:413–446. https://doi.org/10.1016/S0140-6736(20)30367-6

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lövdén M, Fratiglioni L, Glymour MM et al (2020) Education and cognitive functioning across the life span. Psychol Sci Public Interest 21:6–41. https://doi.org/10.1177/1529100620920576

    Article  PubMed  PubMed Central  Google Scholar 

  52. Opdebeeck C, Martyr A, Clare L (2016) Cognitive reserve and cognitive function in healthy older people: a meta-analysis. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn 23:40–60. https://doi.org/10.1080/13825585.2015.1041450

    Article  PubMed  Google Scholar 

  53. Stern Y (2002) What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc 8(3):448–460

  54. Lei L, Huang X, Zhang S et al (2020) Comparison of prevalence and associated factors of anxiety and depression among people affected by versus people unaffected by quarantine during the COVID-19 epidemic in Southwestern China. Med Sci Monit 26:e924609. https://doi.org/10.12659/MSM.924609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Panico F, Luciano SM, Sagliano L et al (2022) Cognitive reserve and coping strategies predict the level of perceived stress during COVID-19 pandemic: a cross-sectional study. Personal Individ Differ 195:111703. https://doi.org/10.1016/j.paid.2022.111703

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank prof. Stefano Cappa for his helpful comments. IRCCS Mondino Foundation was funded by Italian Ministry of Health (Ricerca Corrente 2020-2022/2022–2024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Cerami.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Ethical approval

The study protocol was approved by the local Ethical Committee of IRCCS Mondino Foundation (Pavia, Italy). Written informed consent was obtained from each subject.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16.2 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Picascia, M., Cerami, C., Panzavolta, A. et al. Risk factors for post-COVID cognitive dysfunctions: the impact of psychosocial vulnerability. Neurol Sci 44, 2635–2642 (2023). https://doi.org/10.1007/s10072-023-06884-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-023-06884-9

Keywords

Navigation