Skip to main content
Log in

Rehabilitative interventions for impaired handwriting in people with Parkinson’s disease: a scoping review

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

People with Parkinson’s disease (PD) often complain about handwriting difficulties. Currently, there is no consensus on the rehabilitative treatment and outcome measures for handwriting rehabilitation in PD.

Objectives

This study aims to investigate evidence on handwriting rehabilitation in people with PD, examining characteristics of interventions and outcomes.

Methods

A scoping review was conducted according to Arksey and O’Malley’s framework and PRISMA-ScR List. We searched electronic databases of PubMed, Physiotherapy Evidence Database, Cochrane Central Register of Controlled Trials, and Embase since inception to January 2023. We included interventional studies assessing the effects of structured rehabilitation programs for impaired handwriting in people with PD. Two reviewers independently selected studies, extracted data, and assessed the risk of bias using the Cochrane Collaboration’s tool for assessing Risk of Bias version 2 or the Risk Of Bias In Non-randomized Studies. We performed a narrative analysis on training characteristics and assessed outcomes.

Results

We included eight studies. The risk of bias was generally high. Either handwriting-specific or handwriting-non-specific trainings were proposed, and most studies provided a home-based training. Handwriting-specific training improved writing amplitude while handwriting-non-specific trainings, such as resistance and stretching/relaxation programs, resulted in increased writing speed.

Conclusions

The current knowledge is based on few and heterogeneous studies with high risk of bias. Handwriting-specific training might show potential benefits on handwriting in people with PD. Further high-quality randomized controlled trials are needed to reveal the effect of handwriting training in people with PD on standardized outcome measures. Handwriting-specific training could be combined to resistance training and stretching, which seemed to influence writing performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, Obeso J, Marek K, Litvan I, Lang AE, Halliday G, Goetz CG, Gasser T, Dubois B, Chan P, Bloem BR, Adler CH, Deuschl G (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30:1591–1601. https://doi.org/10.1002/mds.26424

    Article  PubMed  Google Scholar 

  2. Letanneux A, Danna J, Velay JL, Viallet F, Pinto S (2014) From micrographia to Parkinson’s disease dysgraphia. Mov Disord 29:1467–1475. https://doi.org/10.1002/mds.25990

    Article  PubMed  Google Scholar 

  3. Thomas M, Lenka A, Kumar Pal P (2017) Handwriting analysis in Parkinson’s disease: current status and future directions. Mov Disord Clin Pract 4:806–818. https://doi.org/10.1002/mdc3.12552

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sarasso E, Gardoni A, Piramide N, Volonte MA, Canu E, Tettamanti A, Filippi M, Agosta F (2021) Dual-task clinical and functional MRI correlates in Parkinson’s disease with postural instability and gait disorders. Parkinsonism Relat Disord 91:88–95. https://doi.org/10.1016/j.parkreldis.2021.09.003

    Article  CAS  PubMed  Google Scholar 

  5. Tucha O, Mecklinger L, Thome J, Reiter A, Alders GL, Sartor H, Naumann M, Lange KW (2006) Kinematic analysis of dopaminergic effects on skilled handwriting movements in Parkinson’s disease. J Neural Transm 113:609–623. https://doi.org/10.1007/s00702-005-0346-9

    Article  CAS  PubMed  Google Scholar 

  6. Abbruzzese G, Marchese R, Avanzino L, Pelosin E (2016) Rehabilitation for Parkinson’s disease: current outlook and future challenges. Parkinsonism Relat Disord 22(Suppl 1):S60-64. https://doi.org/10.1016/j.parkreldis.2015.09.005

    Article  PubMed  Google Scholar 

  7. Nonnekes J, Nieuwboer A (2018) Towards personalized rehabilitation for gait impairments in Parkinson’s disease. J Parkinsons Dis 8:S101–S106. https://doi.org/10.3233/JPD-181464

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sarasso E, Gardoni A, Tettamanti A, Agosta F, Filippi M, Corbetta D (2022) Virtual reality balance training to improve balance and mobility in Parkinson’s disease: a systematic review and meta-analysis. J Neurol 269:1873–1888. https://doi.org/10.1007/s00415-021-10857-3

    Article  PubMed  Google Scholar 

  9. Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, Moher D, Peters MDJ, Horsley T, Weeks L, Hempel S, Akl EA, Chang C, McGowan J, Stewart L, Hartling L, Aldcroft A, Wilson MG, Garritty C, Lewin S, Godfrey CM, Macdonald MT, Langlois EV, Soares-Weiser K, Moriarty J, Clifford T, Tuncalp O, Straus SE (2018) PRISMA Extension for Scoping Reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med 169:467–473. https://doi.org/10.7326/M18-0850

    Article  PubMed  Google Scholar 

  10. Arksey H, O’Malley L (2005) Scoping studies: towards a methodological framework. Int J Soc Res Methodol 8:19–32. https://doi.org/10.1080/1364557032000119616

    Article  Google Scholar 

  11. Levac D, Colquhoun H, O’Brien KK (2010) Scoping studies: advancing the methodology. Implement Sci 5:69. https://doi.org/10.1186/1748-5908-5-69

    Article  PubMed  PubMed Central  Google Scholar 

  12. World Health Organization (2021) Rehabilitation. https://www.who.int/news-room/fact-sheets/detail/rehabilitation. Accessed 04 Jan 2023

  13. Luckmann R (2001) Evidence-based medicine: how to practice and teach EBM, 2nd edition: by David L. Sackett, Sharon E. Straus, W. Scott Richardson, William Rosenberg, and R. Brian Haynes, Churchill Livingstone, 2000. J Intensive Care Med 16:155–156. https://doi.org/10.1177/088506660101600307

    Article  Google Scholar 

  14. Sterne JAC, Savovic J, Page MJ, Elbers RG, Blencowe NS, Boutron I, Cates CJ, Cheng HY, Corbett MS, Eldridge SM, Emberson JR, Hernan MA, Hopewell S, Hrobjartsson A, Junqueira DR, Juni P, Kirkham JJ, Lasserson T, Li T, McAleenan A, Reeves BC, Shepperd S, Shrier I, Stewart LA, Tilling K, White IR, Whiting PF, Higgins JPT (2019) RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 366:l4898. https://doi.org/10.1136/bmj.l4898

    Article  PubMed  Google Scholar 

  15. Sterne JAC, Hernán MA, McAleenan A, Reeves BC, Higgins JPT (2022) Chapter 25: Assessing risk of bias in a non-randomized study. In: Higgins JPT cochrane handbook for systematic reviews of interventions version 6.3 (updated February 2022). Cochrane, 2022. Available from www.training.cochrane.org/handbook

  16. Bryant MS, Workman CD, Jamal F, Meng H, Jackson GR (2018) Feasibility study: Effect of hand resistance exercise on handwriting in Parkinson’s disease and essential tremor. J Hand Ther 31:29–34. https://doi.org/10.1016/j.jht.2017.01.002

    Article  PubMed  Google Scholar 

  17. Collett J, Franssen M, Winward C, Izadi H, Meaney A, Mahmoud W, Bogdanovic M, Tims M, Wade D, Dawes H (2017) A long-term self-managed handwriting intervention for people with Parkinson’s disease: results from the control group of a phase II randomized controlled trial. Clin Rehabil 31:1636–1645. https://doi.org/10.1177/0269215517711232

    Article  PubMed  Google Scholar 

  18. De Vleeschhauwer J, Nackaerts E, D’Cruz N, Vandendoorent B, Micca L, Vandenberghe W, Nieuwboer A (2022) Associations between resting-state functional connectivity changes and prolonged benefits of writing training in Parkinson’s disease. J Neurol. https://doi.org/10.1007/s00415-022-11098-8

    Article  PubMed  Google Scholar 

  19. Heremans E, Nackaerts E, Vervoort G, Broeder S, Swinnen SP, Nieuwboer A (2016) Impaired retention of motor learning of writing skills in patients with Parkinson’s disease with freezing of gait. Plos One 11:e0148933. https://doi.org/10.1371/journal.pone.0148933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nackaerts E, Broeder S, Pereira MP, Swinnen SP, Vandenberghe W, Nieuwboer A, Heremans E (2017) Handwriting training in Parkinson’s disease: a trade-off between size, speed and fluency. Plos One 12:e0190223. https://doi.org/10.1371/journal.pone.0190223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nackaerts E, Heremans E, Vervoort G, Smits-Engelsman BC, Swinnen SP, Vandenberghe W, Bergmans B, Nieuwboer A (2016) Relearning of writing skills in Parkinson’s disease after intensive amplitude training. Mov Disord 31:1209–1216. https://doi.org/10.1002/mds.26565

    Article  PubMed  Google Scholar 

  22. Vorasoot N, Termsarasab P, Thadanipon K, Pulkes T (2020) Effects of handwriting exercise on functional outcome in Parkinson disease: a randomized controlled trial. J Clin Neurosci 72:298–303. https://doi.org/10.1016/j.jocn.2019.08.119

    Article  PubMed  Google Scholar 

  23. Ziliotto A, Cersosimo MG, Micheli FE (2015) Handwriting rehabilitation in Parkinson disease: a pilot study. Ann Rehabil Med 39:586–591. https://doi.org/10.5535/arm.2015.39.4.586

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nackaerts E, Michely J, Heremans E, Swinnen SP, Smits-Engelsman BCM, Vandenberghe W, Grefkes C, Nieuwboer A (2018) Training for micrographia alters neural connectivity in Parkinson’s disease. Front Neurosci 12:3. https://doi.org/10.3389/fnins.2018.00003

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vercruysse S, Spildooren J, Heremans E, Vandenbossche J, Wenderoth N, Swinnen SP, Vandenberghe W, Nieuwboer A (2012) Abnormalities and cue dependence of rhythmical upper-limb movements in Parkinson patients with freezing of gait. Neurorehabil Neural Repair 26:636–645. https://doi.org/10.1177/1545968311431964

    Article  PubMed  Google Scholar 

  26. Agosta F, Gatti R, Sarasso E, Volonte MA, Canu E, Meani A, Sarro L, Copetti M, Cattrysse E, Kerckhofs E, Comi G, Falini A, Filippi M (2017) Brain plasticity in Parkinson’s disease with freezing of gait induced by action observation training. J Neurol 264:88–101. https://doi.org/10.1007/s00415-016-8309-7

    Article  PubMed  Google Scholar 

  27. Sarasso E, Agosta F, Piramide N, Gardoni A, Canu E, Leocadi M, Castelnovo V, Basaia S, Tettamanti A, Volonte MA, Filippi M (2021) Action observation and motor imagery improve dual task in Parkinson’s disease: a clinical/fMRI study. Mov Disord 36:2569–2582. https://doi.org/10.1002/mds.28717

    Article  PubMed  Google Scholar 

  28. Cikajlo I, PeterlinPotisk K (2019) Advantages of using 3D virtual reality based training in persons with Parkinson’s disease: a parallel study. J Neuroeng Rehabil 16:119. https://doi.org/10.1186/s12984-019-0601-1

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fernandez-Gonzalez P, Carratala-Tejada M, Monge-Pereira E, Collado-Vazquez S, Sanchez-Herrera Baeza P, Cuesta-Gomez A, Ona-Simbana ED, Jardon-Huete A, Molina-Rueda F, Balaguer-Bernaldo de Quiros C, Miangolarra-Page JC, Cano-de la Cuerda R (2019) Leap motion controlled video game-based therapy for upper limb rehabilitation in patients with Parkinson’s disease: a feasibility study. J Neuroeng Rehabil 16:133. https://doi.org/10.1186/s12984-019-0593-x

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lahude AB, Souza Correa P, ME PC, Cechetti F (2022) The impact of virtual reality on manual dexterity of Parkinson’s disease subjects: a systematic review. Disabil Rehabil Assist Technol 25:1–8. https://doi.org/10.1080/17483107.2021.2001060

  31. Ona ED, Balaguer C, Cano-de la Cuerda R, Collado-Vazquez S, Jardon A (2018) Effectiveness of serious games for leap motion on the functionality of the upper limb in Parkinson’s disease: a feasibility study. Comput Intell Neurosci 2018:7148427. https://doi.org/10.1155/2018/7148427

    Article  PubMed  PubMed Central  Google Scholar 

  32. van Beek JJW, van Wegen EEH, Bohlhalter S, Vanbellingen T (2019) Exergaming-based dexterity training in persons with Parkinson disease: a pilot feasibility study. J Neurol Phys Ther 43:168–174. https://doi.org/10.1097/NPT.0000000000000278

    Article  PubMed  Google Scholar 

  33. Broeder S, Nackaerts E, Nieuwboer A, Smits-Engelsman BC, Swinnen SP, Heremans E (2014) The effects of dual tasking on handwriting in patients with Parkinson’s disease. Neuroscience 263:193–202. https://doi.org/10.1016/j.neuroscience.2014.01.019

    Article  CAS  PubMed  Google Scholar 

  34. Bryant MS, Rintala DH, Lai EC, Protas EJ (2010) An investigation of two interventions for micrographia in individuals with Parkinson’s disease. Clin Rehabil 24:1021–1026. https://doi.org/10.1177/0269215510371420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Heremans E, Nackaerts E, Vervoort G, Vercruysse S, Broeder S, Strouwen C, Swinnen SP, Nieuwboer A (2015) Amplitude manipulation evokes upper limb freezing during handwriting in patients with Parkinson’s disease with freezing of gait. Plos One 10:e0142874. https://doi.org/10.1371/journal.pone.0142874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim H, Yoon JH, Nam HS (2015) Efficacy of language-appropriate cueing on micrographia in Korean patients with Parkinson’s disease. Geriatr Gerontol Int 15:647–651. https://doi.org/10.1111/ggi.12313

    Article  PubMed  Google Scholar 

  37. Nackaerts E, Nieuwboer A, Broeder S, Smits-Engelsman BC, Swinnen SP, Vandenberghe W, Heremans E (2016) Opposite effects of visual cueing during writing-like movements of different amplitudes in Parkinson’s disease. Neurorehabil Neural Repair 30:431–439. https://doi.org/10.1177/1545968315601361

    Article  PubMed  Google Scholar 

  38. Nackaerts E, Nieuwboer A, Farella E (2017) Technology-assisted rehabilitation of writing skills in Parkinson’s disease: visual cueing versus intelligent feedback. Parkinsons Dis 2017:9198037. https://doi.org/10.1155/2017/9198037

    Article  PubMed  PubMed Central  Google Scholar 

  39. Oliveira RM, Gurd JM, Nixon P, Marshall JC, Passingham RE (1997) Micrographia in Parkinson’s disease: the effect of providing external cues. J Neurol Neurosurg Psychiatry 63:429–433. https://doi.org/10.1136/jnnp.63.4.429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Teulings HL, Contreras-Vidal JL, Stelmach GE, Adler CH (2002) Adaptation of handwriting size under distorted visual feedback in patients with Parkinson’s disease and elderly and young controls. J Neurol Neurosurg Psychiatry 72:315–324. https://doi.org/10.1136/jnnp.72.3.315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nackaerts E, Vervoort G, Heremans E, Smits-Engelsman BC, Swinnen SP, Nieuwboer A (2013) Relearning of writing skills in Parkinson’s disease: a literature review on influential factors and optimal strategies. Neurosci Biobehav Rev 37:349–357. https://doi.org/10.1016/j.neubiorev.2013.01.015

    Article  PubMed  Google Scholar 

  42. Potgieser AR, Roosma E, Beudel M, de Jong BM (2015) The effect of visual feedback on writing size in Parkinson’s disease. Parkinsons Dis 2015. https://doi.org/10.1155/2015/857041

  43. Filippi M, Basaia S, Sarasso E, Stojkovic T, Stankovic I, Fontana A, Tomic A, Piramide N, Stefanova E, Markovic V, Kostic VS, Agosta F (2021) Longitudinal brain connectivity changes and clinical evolution in Parkinson’s disease. Mol Psychiatry 26:5429–5440. https://doi.org/10.1038/s41380-020-0770-0

    Article  PubMed  Google Scholar 

  44. Filippi M, Sarasso E, Agosta F (2019) Resting-state functional MRI in Parkinsonian syndromes. Mov Disord Clin Pract 6:104–117. https://doi.org/10.1002/mdc3.12730

    Article  PubMed  PubMed Central  Google Scholar 

  45. Filippi M, Sarasso E, Piramide N, Stojkovic T, Stankovic I, Basaia S, Fontana A, Tomic A, Markovic V, Stefanova E, Kostic VS, Agosta F (2020) Progressive brain atrophy and clinical evolution in Parkinson’s disease. Neuroimage Clin 28:102374. https://doi.org/10.1016/j.nicl.2020.102374

    Article  PubMed  PubMed Central  Google Scholar 

  46. Piramide N, Agosta F, Sarasso E, Canu E, Volonte MA, Filippi M (2020) Brain activity during lower limb movements in Parkinson’s disease patients with and without freezing of gait. J Neurol 267:1116–1126. https://doi.org/10.1007/s00415-019-09687-1

    Article  PubMed  Google Scholar 

  47. Sarasso E, Agosta F, Piramide N, Filippi M (2021) Progression of grey and white matter brain damage in Parkinson’s disease: a critical review of structural MRI literature. J Neurol 268:3144–3179. https://doi.org/10.1007/s00415-020-09863-8

    Article  PubMed  Google Scholar 

  48. Sarasso E, Agosta F, Temporiti F, Adamo P, Piccolo F, Copetti M, Gatti R, Filippi M (2018) Brain motor functional changes after somatosensory discrimination training. Brain Imaging Behav 12:1011–1021. https://doi.org/10.1007/s11682-017-9763-2

    Article  PubMed  Google Scholar 

  49. Essery R, Geraghty AW, Kirby S, Yardley L (2017) Predictors of adherence to home-based physical therapies: a systematic review. Disabil Rehabil 39:519–534. https://doi.org/10.3109/09638288.2016.1153160

    Article  PubMed  Google Scholar 

  50. Atterbury EM, Welman KE (2017) Balance training in individuals with Parkinson’s disease: therapist-supervised vs. home-based exercise programme. Gait Posture 55:138–144. https://doi.org/10.1016/j.gaitpost.2017.04.006

    Article  PubMed  Google Scholar 

  51. Gopal A, Hsu WY, Allen DD, Bove R (2022) Remote assessments of hand function in neurological disorders: systematic review. JMIR Rehabil Assist Technol 9:e33157. https://doi.org/10.2196/33157

    Article  PubMed  PubMed Central  Google Scholar 

  52. Truijen S, Abdullahi A, Bijsterbosch D, van Zoest E, Conijn M, Wang Y, Struyf N, Saeys W (2022) Effect of home-based virtual reality training and telerehabilitation on balance in individuals with Parkinson disease, multiple sclerosis, and stroke: a systematic review and meta-analysis. Neurol Sci. https://doi.org/10.1007/s10072-021-05855-2

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Italian Ministry of Health (MoH) Grant: Ricerca Finalizzata 2018 (GR-2018–12366005).

Author information

Authors and Affiliations

Authors

Contributions

1. Research project: A. Conception, B. Organization, C. Execution.

2. Statistical analysis: A. Design, B. Execution, C. Review and critique.

3. Manuscript preparation: A. Writing of the first draft, B. Review and critique.

A.G.: 1A, 1B, 1C, 2A, 2B, 2C, 3A, 3B

E.S.: 1A, 1B, 1C, 2A, 2B, 2C, 3A, 3B

F.A.: 2C, 3B

M.F.: 2C, 3B

D.C.: 1A, 1B, 1C, 2A, 2B, 2C, 3A, 3B

Corresponding author

Correspondence to Davide Corbetta.

Ethics declarations

Disclosures

A.G. has no financial disclosure to report. E.S. received research supports from the Italian Ministry of Health (MoH) Grant: Ricerca Finalizzata 2021 (GR-2021–12374005). D.C. received research supports from the Italian Ministry of Health (MoH) Grant: Ricerca Finalizzata 2018 (GR-2018–12366005). F.A. is Associate Editor of Neuroimage: Clinical, has received speaker honoraria from Biogen Idec, Italfarmaco, Roche and Zambon, and receives or has received research supports from the Italian Ministry of Health, AriSLA (Fondazione Italiana di Ricerca per la SLA), the European Research Council and Foundation Research on Alzheimer Disease. M.F. is Editor-in-Chief of the Journal of Neurology, Associate Editor of Human Brain Mapping, Neurological Sciences, and Radiology; received compensation for consulting services from Alexion, Almirall, Biogen, Merck, Novartis, Roche, Sanofi; speaking activities from Bayer, Biogen, Celgene, Chiesi Italia SpA, Eli Lilly, Genzyme, Janssen, Merck-Serono, Neopharmed Gentili, Novartis, Novo Nordisk, Roche, Sanofi, Takeda, and TEVA; participation in Advisory Boards for Alexion, Biogen, Bristol-Myers Squibb, Merck, Novartis, Roche, Sanofi, Sanofi-Aventis, Sanofi-Genzyme, Takeda; scientific direction of educational events for Biogen, Merck, Roche, Celgene, Bristol-Myers Squibb, Lilly, Novartis, Sanofi-Genzyme; he receives research support from Biogen Idec, Merck-Serono, Novartis, Roche, Italian Ministry of Health, and Fondazione Italiana Sclerosi Multipla.

Conflict of interest

None.

Ethical approval

Ethical approval was not required for this scoping review (no collection of original data).

Informed consent

Not applicable

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gardoni, A., Sarasso, E., Agosta, F. et al. Rehabilitative interventions for impaired handwriting in people with Parkinson’s disease: a scoping review. Neurol Sci 44, 2667–2677 (2023). https://doi.org/10.1007/s10072-023-06752-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-023-06752-6

Keywords

Navigation