Skip to main content
Log in

Development of prediction models based on respiratory assessments to determine the need for non-invasive ventilation in patients with myotonic dystrophy type 1

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Introduction

Myotonic dystrophy type 1 is a slowly progressive, multisystem, autosomal dominant disorder, in which the impairments of respiratory systems represent one of the main causes of death.

Objective

The aim of our study is to develop prediction models to identify the most appropriate test(s) providing indication for NIV.

Methods

DM1 patients attending the NEMO Clinical Center (Milan) between January 2008 and July 2020, who had been subjected to a complete battery of respiratory tests, were retrospectively recruited. Demographic, clinical, and anthropometric characteristics were collected, as well as arterial blood gas (ABG) analysis, spirometry, respiratory muscle strength, cough efficacy, and nocturnal oximetry as respiratory assessments. Patients were stratified in those requiring NIV and those with normal respiratory function.

Results

Out of 151 DM1 patients (median age: 44 years [35.00–53.00]; male/female ratio: 0.80 (67/84)), 76 had an indication for NIV initiation (50.33%). ABG, spirometry, and nocturnal oximetry prediction models resulted in an excellent discriminatory ability in distinguishing patients who needed NIV from those who did not (AUC of 0.818, 0.808, and 0.935, respectively). An easy-to-use calculator was developed to automatically determine a score of NIV necessity based on the prediction equations generated from each aforementioned prediction model.

Conclusions

The proposed prediction models may help to identify which patients are at a higher risk of requiring ventilator support and therefore help in defining individual management plans and criteria for specific interventions early in the disease course.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.. 1

Similar content being viewed by others

Data availability statement

Data are available upon reasonable request. De-identified database will be shared upon reasonable request for 2 years after publication by contacting the corresponding author at the following e-mail: andrea.lizio@centrocliniconemo.it.

References

  1. Bouchard JP, Cossette L, Bassez G, Puymirat J (2015) Natural history of skeletal muscle involvement in myotonic dystrophy type 1: a retrospective study in 204 cases. J Neurol 262(2):285–293. https://doi.org/10.1007/s00415-014-7570-x

    Article  CAS  PubMed  Google Scholar 

  2. Johnson NE (2019) Myotonic muscular dystrophies. Continuum (Minneap Minn). 25(6):1682–1695. https://doi.org/10.1212/CON.0000000000000793

    Article  PubMed  Google Scholar 

  3. Thornton CA (2014) Myotonic dystrophy. Neurol Clin 32(3):705–719, viii. https://doi.org/10.1016/j.ncl.2014.04.011

    Article  PubMed  PubMed Central  Google Scholar 

  4. de Die-Smulders CE, Höweler CJ, Thijs C, Mirandolle JF, Anten HB, Smeets HJ et al (1998) Age and causes of death in adult-onset myotonic dystrophy. Brain 121(Pt 8):1557–1563. https://doi.org/10.1093/brain/121.8.1557

    Article  PubMed  Google Scholar 

  5. Mathieu J, Allard P, Potvin L, Prévost C, Bégin P (1999) A 10-year study of mortality in a cohort of patients with myotonic dystrophy. Neurology 52(8):1658–1662. https://doi.org/10.1212/wnl.52.8.1658

    Article  CAS  PubMed  Google Scholar 

  6. Groh WJ, Groh MR, Shen C, Monckton DG, Bodkin CL, Pascuzzi RM (2011) Survival and CTG repeat expansion in adults with myotonic dystrophy type 1. Muscle Nerve 43(5):648–651. https://doi.org/10.1002/mus.21934

    Article  CAS  PubMed  Google Scholar 

  7. Wenninger S, Montagnese F, Schoser B (2018) Core clinical phenotypes in myotonic dystrophies. Front Neurol 9:303. https://doi.org/10.3389/fneur.2018.00303

    Article  PubMed  PubMed Central  Google Scholar 

  8. Boentert M, Cao M, Mass D, De Mattia E, Falcier E, Goncalves M et al (2020) Consensus-based care recommendations for pulmonologists treating adults with myotonic dystrophy type 1. Respiration 99(4):360–368. https://doi.org/10.1159/000505634

    Article  PubMed  Google Scholar 

  9. Turner C, Hilton-Jones D (2014) Myotonic dystrophy: diagnosis, management and new therapies. Curr Opin Neurol 27(5):599–606. https://doi.org/10.1097/WCO.0000000000000128

    Article  PubMed  Google Scholar 

  10. Heatwole C, Bode R, Johnson N, Quinn C, Martens W, McDermott MP et al (2012) Patient-reported impact of symptoms in myotonic dystrophy type 1 (PRISM-1). Neurology 79(4):348–357; Erratum in: Neurology 79(13):1411. https://doi.org/10.1212/WNL.0b013e318260cbe6

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sansone VA, Gagnon C; participants of the 207th ENMC Workshop (2015) 207th ENMC workshop on chronic respiratory insufficiency in myotonic dystrophies: management and implications for research, 27-29 June 2014, Naarden. The Netherlands. Neuromuscul Disord 25(5):432–442. https://doi.org/10.1016/j.nmd.2015.01.011

    Article  Google Scholar 

  12. Boussaïd G, Prigent H, Laforet P, Raphaël JC, Annane D, Orlikowski D et al (2018) Effect and impact of mechanical ventilation in myotonic dystrophy type 1: a prospective cohort study. Thorax 73(11):5–1078. https://doi.org/10.1136/thoraxjnl-2017-210610

    Article  Google Scholar 

  13. O'Donoghue F, FJ BJC, Dauvilliers Y, Levy P, Tamisier R, Pépin JL (2017) Effects of 1-month withdrawal of ventilatory support in hypercapnic myotonic dystrophy type 1. Respirology 22(7):1416–1422. https://doi.org/10.1111/resp.13068

    Article  PubMed  Google Scholar 

  14. Vivekananda U, Turner C (2019) A model to predict ventilator requirement in myotonic dystrophy type 1. Muscle Nerve 59(6):683–687. https://doi.org/10.1002/mus.26471

    Article  PubMed  Google Scholar 

  15. Mazzoli M, Ariatti A, Garuti G, Agnoletto V, Fantini R, Marchioni A et al (2021) Predictors of respiratory decline in myotonic dystrophy type 1 (DM1): a longitudinal cohort study. Acta Neurol Bel 121(1):133–142. https://doi.org/10.1007/s13760-020-01425-z

    Article  Google Scholar 

  16. Mathieu J, Boivin H, Meunier D, Gaudreault M, Bégin P (2001) Assessment of a disease-specific muscular impairment rating scale in myotonic dystrophy. Neurology 56(3):336–340. https://doi.org/10.1212/wnl.56.3.336

    Article  CAS  PubMed  Google Scholar 

  17. Graham BL, Steenbruggen I, Miller MR, Barjaktarevic IZ, Cooper BG, Hall GL et al (2019) Standardization of spirometry 2019 update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am J Respir Crit Care Med 200(8):e70–e88. https://doi.org/10.1164/rccm.201908-1590ST

    Article  PubMed  PubMed Central  Google Scholar 

  18. Goldman HI, Becklake MR (1959) Respiratory function tests; normal values at median altitudes and the prediction of normal results. Am Rev Tuberc 79(4):457–467. https://doi.org/10.1164/artpd.1959.79.4.457

    Article  CAS  PubMed  Google Scholar 

  19. Cooper BG, Stocks J, Hall GL, Culver B, Steenbruggen I, Carter KW et al (2017) The global lung function initiative (GLI) network: bringing the world’s respiratory reference values together. Breathe (Sheff) 13(3):e56–e64. https://doi.org/10.1183/20734735.012717

    Article  PubMed  Google Scholar 

  20. American Thoracic Society/European Respiratory Society (2002) ATS/ERS statement on respiratory muscle testing. Am J Respir Crit Care Med 166(4):518–624. https://doi.org/10.1164/rccm.166.4.518

    Article  Google Scholar 

  21. Chatwin M, Toussaint M, Gonçalves MR, Sheers N, Mellies U, Gonzales-Bermejo J et al (2018) Airway clearance techniques in neuromuscular disorders: a state of the art review. Respir Med 136:98–110. https://doi.org/10.1016/j.rmed.2018.01.012

    Article  PubMed  Google Scholar 

  22. Bursac Z, Gauss CH, Williams DK, Hosmer DW (2008) Purposeful selection of variables in logistic regression. Source Code Biol Med 3:17. https://doi.org/10.1186/1751-0473-3-17

    Article  PubMed  PubMed Central  Google Scholar 

  23. Moons KG, Altman DG, Reitsma JB, Ioannidis JP, Macaskill P, Steyerberg EW et al (2015) Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med 162(1):W1–W73. https://doi.org/10.7326/M14-0698

    Article  PubMed  Google Scholar 

  24. Hosmer DW, Lemeshow S, Sturdivant RX (2000) Assessing the fit of the model. In: Applied logistic regression, 2rd edn. Wiley, Hoboken. https://doi.org/10.1002/0471722146.ch5

    Chapter  Google Scholar 

  25. Cho HE, Lee JW, Kang SW, Choi WA, Oh H, Lee KC (2016) Comparison of pulmonary functions at onset of ventilatory insufficiency in patients with amyotrophic lateral sclerosis, Duchenne muscular dystrophy, and myotonic muscular dystrophy. Ann Rehabil Med 40(1):74–80. https://doi.org/10.5535/arm.2016.40.1.74

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wenninger S, Stahl K, Wirner C, Einvag K, Thiele S, Walter MC et al (2020) Utility of maximum inspiratory and expiratory pressures as a screening method for respiratory insufficiency in slowly progressive neuromuscular disorders. Neuromuscul Disord 30(8):640–648. https://doi.org/10.1016/j.nmd.2020.06.009

    Article  PubMed  Google Scholar 

  27. Poussel M, Thil C, Kaminsky P, Mercy M, Gomez E, Chaouat A et al (2015) Lack of correlation between the ventilatory response to CO2 and lung function impairment in myotonic dystrophy patients: evidence for a dysregulation at central level. Neuromuscul Disord 25(5):403–408. https://doi.org/10.1016/j.nmd.2015.02.006

    Article  PubMed  Google Scholar 

  28. Pincherle A, Patruno V, Raimondi P, Moretti S, Dominese A, Martinelli-Boneschi F et al (2012) Sleep breathing disorders in 40 Italian patients with Myotonic dystrophy type 1. Neuromuscul Disord 22(3):219–224. https://doi.org/10.1016/j.nmd.2011.08.010

    Article  PubMed  Google Scholar 

  29. Spiesshoefer J, Runte M, Heidbreder A, Dreher M, Young P, Brix T et al (2019) Sleep-disordered breathing and effects of non-invasive ventilation on objective sleep and nocturnal respiration in patients with myotonic dystrophy type I. Neuromuscul Disord 29(4):302–309. https://doi.org/10.1016/j.nmd.2019.02.006

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to all patients and their caregiver that collaborate to the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Lizio.

Ethics declarations

Ethical approval

According to the Declaration of Helsinki and the ICH E6 Guideline for Good Clinical Practice, all patients signed and personally dated an approved informed consent form, after receiving detailed written and verbal information. The study was approved the institutional ethics committee of Milano Area 3 (No. 392-09062021).

Conflict of interest

AL received compensation for occasional scientific consulting from Italfarmaco, VAS participates in Advisory Boards or Teaching activities for Biogen, Roche, Avexis, PTC, Santhera, Sarepta, Dyne. Other authors declared no disclosures.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lizio, A., Pirola, A., Ferrari, C.R.A. et al. Development of prediction models based on respiratory assessments to determine the need for non-invasive ventilation in patients with myotonic dystrophy type 1. Neurol Sci 44, 2149–2157 (2023). https://doi.org/10.1007/s10072-023-06631-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-023-06631-0

Keywords

Navigation