Skip to main content

Advertisement

Log in

Prediction of poor outcome in stroke patients using radiomics analysis of intraparenchymal and intraventricular hemorrhage and clinical factors

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Purpose

To build three prognostic models using radiomics analysis of the hemorrhagic lesions, clinical variables, and their combination, to predict the outcome of stroke patients with spontaneous intracerebral hemorrhage (sICH).

Materials and methods

Eighty-three sICH patients were included. Among them, 40 patients (48.2%) had poor prognosis with modified Rankin scale (mRS) of 5 and 6 at discharge, and the prognostic model was built to differentiate mRS ≤ 4 vs. 5 + 6. The region of interest (ROI) of intraparenchymal hemorrhage (IPH) and intraventricular hemorrhage (IVH) were separately segmented. Features were extracted using PyRadiomics, and the support vector machine was applied to select features and build radiomics models based on IPH and IPH + IVH. The clinical models were built using multivariate logistic regression, and then the radiomics scores were combined with clinical variables to build the combined model.

Results

When using IPH, the AUC for radiomics, clinical, and combined model was 0.78, 0.82, and 0.87, respectively. When using IPH + IVH, the AUC was increased to 0.80, 0.84, and 0.90, respectively. The combined model had a significantly improved AUC compared to the radiomics by DeLong test. A clinical prognostic model based on the ICH score of 0–1 only achieved AUC of 0.71.

Conclusions

The combined model using the radiomics score derived from IPH + IVH and the clinical factors could achieve a high accuracy in prediction of sICH patients with poor outcome, which may be used to assist in making the decision about the optimal care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The complete data are available from the corresponding author on a reasonable request.

Abbreviations

AUC:

Area under the ROC curve

ClM:

Clinical model

CoM:

Combined model

CT:

Computed tomography

GCS:

Glasgow coma scale

HE:

Hematoma expansion

ICH:

Intracerebral hemorrhage

IPH:

Intraparenchymal hemorrhage

IVH:

Intraventricular hemorrhage

mRS:

Modified Rankin scale

NCCT:

Noncontrast computed tomography

NIHSS:

National Institute of Health Stroke Scale

RaM:

Radiomics model

ROC:

Receiver operating characteristic

ROI:

Region of interest

RS:

Radiomics score

sICH:

Spontaneous intracerebral hemorrhage

References

  1. Qureshi AI, Tuhrim S, Broderick JP, Batjer HH, Hondo H, Hanley DF (2001) Spontaneous intracerebral hemorrhage. N Engl J Med 344:1450–1460

    Article  CAS  PubMed  Google Scholar 

  2. van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A, Klijn CJ (2010) Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol 9:167–176

    Article  PubMed  Google Scholar 

  3. Davis SM, Broderick J, Hennerici M, Brun NC, Diringer MN, Mayer SA et al (2006) Hematoma growth is a determinant of mortality and poor outcome after intracerebral hemorrhage. Neurology 66:1175–1181

    Article  CAS  PubMed  Google Scholar 

  4. Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V (2009) Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol 8:355–369

    Article  PubMed  Google Scholar 

  5. Mayer SA, Brun NC, Begtrup K, Broderick J, Davis S, Diringer MN et al (2008) Efficacy and safety of recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J Med 358:2127–2137

    Article  CAS  PubMed  Google Scholar 

  6. Baharoglu MI, Cordonnier C, Al-Shahi Salman R, de Gans K, Koopman MM, Brand A et al (2016) Platelet transfusion versus standard care after acute stroke due to spontaneous cerebral haemorrhage associated with antiplatelet therapy (PATCH): a randomised, open-label, phase 3 trial. Lancet 387:2605–2613

    Article  PubMed  Google Scholar 

  7. Anderson CS, Heeley E, Huang Y, Wang J, Stapf C, Delcourt C et al (2013) Rapid blood-pressure lowering in patients with acute intracerebral hemorrhage. N Engl J Med 368:2355–2365

    Article  CAS  PubMed  Google Scholar 

  8. Gladstone DJ, Aviv RI, Demchuk AM, Hill MD, Thorpe KE, Khoury JC et al (2019) Effect of recombinant activated coagulation factor VII on hemorrhage expansion among patients with spot sign–positive acute intracerebral hemorrhage: the SPOTLIGHT and STOP-IT randomized clinical trials. JAMA Neurol 76:1493–1501

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sprigg N, Flaherty K, Appleton JP, Al-Shahi Salman R, Bereczki D, Beridze M et al (2018) Tranexamic acid for hyperacute primary IntraCerebral Haemorrhage (TICH-2): an international randomised, placebo-controlled, phase 3 superiority trial. Lancet 391:2107–2115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mendelow AD, Gregson BA, Rowan EN, Murray GD, Gholkar A, Mitchell PM (2013) Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): a randomised trial. Lancet 382:397–408

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hanley DF, Thompson RE, Rosenblum M, Yenokyan G, Lane K, McBee N et al (2019) Efficacy and safety of minimally invasive surgery with thrombolysis in intracerebral haemorrhage evacuation (MISTIE III): a randomised, controlled, open-label, blinded endpoint phase 3 trial. Lancet (London, England) 393:1021–1032

    Article  PubMed  Google Scholar 

  12. Hemphill JC 3rd, Farrant M, Neill TA Jr (2009) Prospective validation of the ICH Score for 12-month functional outcome. Neurology 73:1088–1094

    Article  PubMed  PubMed Central  Google Scholar 

  13. Schmidt FA, Liotta EM, Prabhakaran S, Naidech AM, Maas MB (2018) Assessment and comparison of the max-ICH score and ICH score by external validation. Neurology 91:e939–e946

    Article  PubMed  PubMed Central  Google Scholar 

  14. Garrett JS, Zarghouni M, Layton KF, Graybeal D, Daoud YA (2013) Validation of clinical prediction scores in patients with primary intracerebral hemorrhage. Neurocrit Care 19:329–335

    Article  PubMed  Google Scholar 

  15. Parry-Jones AR, Abid KA, Di Napoli M, Smith CJ, Vail A, Patel HC et al (2013) Accuracy and clinical usefulness of intracerebral hemorrhage grading scores: a direct comparison in a UK population. Stroke 44:1840–1845

    Article  PubMed  Google Scholar 

  16. Hwang DY, Dell CA, Sparks MJ, Watson TD, Langefeld CD, Comeau ME et al (2016) Clinician judgment vs formal scales for predicting intracerebral hemorrhage outcomes. Neurology 86:126–133

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fujii Y, Tanaka R, Takeuchi S, Koike T, Minakawa T, Sasaki O (1994) Hematoma enlargement in spontaneous intracerebral hemorrhage 80:51

    CAS  Google Scholar 

  18. Kazui S, Naritomi H, Yamamoto H, Sawada T, Yamaguchi T (1996) Enlargement of spontaneous intracerebral hemorrhage. Stroke 27:1783–1787

    Article  CAS  PubMed  Google Scholar 

  19. Dowlatshahi D, Demchuk AM, Flaherty ML, Ali M, Lyden PL, Smith EE (2011) Defining hematoma expansion in intracerebral hemorrhage: relationship with patient outcomes. Neurology 76:1238–1244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Witsch J, Siegerink B, Nolte CH, Sprügel M, Steiner T, Endres M et al (2021) Prognostication after intracerebral hemorrhage: a review. Neurological Research and Practice 3:22

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rost NS, Smith EE, Chang Y, Snider RW, Chanderraj R, Schwab K et al (2008) Prediction of functional outcome in patients with primary intracerebral hemorrhage. Stroke 39:2304–2309

    Article  PubMed  Google Scholar 

  22. Hemphill JC 3rd, Bonovich DC, Besmertis L, Manley GT, Johnston SC (2001) The ICH score: a simple, reliable grading scale for intracerebral hemorrhage. Stroke 32:891–897

    Article  PubMed  Google Scholar 

  23. Brouwers HB, Chang Y, Falcone GJ, Cai X, Ayres AM, Battey TW et al (2014) Predicting hematoma expansion after primary intracerebral hemorrhage. JAMA Neurol 71:158–164

    Article  PubMed  PubMed Central  Google Scholar 

  24. Huynh TJ, Aviv RI, Dowlatshahi D, Gladstone DJ, Laupacis A, Kiss A et al (2015) Validation of the 9-point and 24-point hematoma expansion prediction scores and derivation of the PREDICT A/B scores. Stroke 46:3105–3110

    Article  CAS  PubMed  Google Scholar 

  25. Morotti A, Dowlatshahi D, Boulouis G, Al-Ajlan F, Demchuk AM, Aviv RI et al (2018) Predicting intracerebral hemorrhage expansion with noncontrast computed tomography. Stroke 49:1163–1169

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang X, Arima H, Salman RA-S, Woodward M, Heeley E, Stapf C et al (2015) Clinical prediction algorithm (BRAIN) to determine risk of hematoma growth in acute intracerebral hemorrhage. Stroke 46:376–381

    Article  CAS  PubMed  Google Scholar 

  27. Gregório T, Pipa S, Cavaleiro P, Atanásio G, Albuquerque I, Chaves PC et al (2018) Prognostic models for intracerebral hemorrhage: systematic review and meta-analysis. BMC Med Res Methodol 18:145

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wang H-L, Hsu W-Y, Lee M-H, Weng H-H, Chang S-W, Yang J-T, Tsai YH (2019) Automatic machine-learning-based outcome prediction in patients with primary intracerebral hemorrhage. Front Neurol 10:910. https://doi.org/10.3389/fneur.2019.00910

  29. Shen Q, Shan Y, Hu Z, Chen W, Yang B, Han J et al (2018) Quantitative parameters of CT texture analysis as potential markers for early prediction of spontaneous intracranial hemorrhage enlargement. Eur Radiol 28:4389–4396

    Article  PubMed  Google Scholar 

  30. Li H, Xie Y, Wang X, Chen F, Sun J, Jiang X (2019) Radiomics features on non-contrast computed tomography predict early enlargement of spontaneous intracerebral hemorrhage. Clin Neurol Neurosurg 185:105491

    Article  PubMed  Google Scholar 

  31. Liu J, Xu H, Chen Q, Zhang T, Sheng W, Huang Q et al (2019) Prediction of hematoma expansion in spontaneous intracerebral hemorrhage using support vector machine. EBioMedicine 43:454–459

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ma C, Zhang Y, Niyazi T, Wei J, Guocai G, Liu J et al (2019) Radiomics for predicting hematoma expansion in patients with hypertensive intraparenchymal hematomas. Eur J Radiol 115:10–15

    Article  PubMed  Google Scholar 

  33. Xie H, Ma S, Wang X, Zhang X (2020) Noncontrast computer tomography-based radiomics model for predicting intracerebral hemorrhage expansion: preliminary findings and comparison with conventional radiological model. Eur Radiol 30:87–98

    Article  PubMed  Google Scholar 

  34. Song Z, Guo D, Tang Z, Liu H, Li X, Luo S et al (2021) Noncontrast computed tomography-based radiomics analysis in discriminating early hematoma expansion after spontaneous intracerebral hemorrhage. Korean J Radiol 22:415–424

    Article  PubMed  Google Scholar 

  35. Chen Q, Zhu D, Liu J, Zhang M, Xu H, Xiang Y et al (2021) Clinical-radiomics nomogram for risk estimation of early hematoma expansion after acute intracerebral hemorrhage. Acad Radiol 28:307–317

    Article  PubMed  Google Scholar 

  36. Guo R, Zhang R, Liu R, Liu Y, Li H, Ma L et al (2022) Machine learning-based approaches for prediction of patients’ functional outcome and mortality after spontaneous intracerebral hemorrhage. J Pers Med 12:112

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nawabi J, Kniep H, Elsayed S, Friedrich C, Sporns P, Rusche T et al (2021) Imaging-based outcome prediction of acute intracerebral hemorrhage. Transl Stroke Res 12:958–967

    Article  PubMed  PubMed Central  Google Scholar 

  38. Haider SP, Qureshi AI, Jain A, Tharmaseelan H, Berson ER, Zeevi T et al (2021) Admission computed tomography radiomic signatures outperform hematoma volume in predicting baseline clinical severity and functional outcome in the ATACH-2 trial intracerebral hemorrhage population. Eur J Neurol 28:2989–3000

    Article  PubMed  PubMed Central  Google Scholar 

  39. Song Z, Tang Z, Liu H, Guo D, Cai J, Zhou Z (2021) A clinical-radiomics nomogram may provide a personalized 90-day functional outcome assessment for spontaneous intracerebral hemorrhage. Eur Radiol 31:4949–4959

    Article  PubMed  Google Scholar 

  40. Hallevi H, Albright KC, Aronowski J, Barreto AD, Martin-Schild S, Khaja AM et al (2008) Intraventricular hemorrhage: anatomic relationships and clinical implications. Neurology 70:848–852

    Article  CAS  PubMed  Google Scholar 

  41. Maas MB, Nemeth AJ, Rosenberg NF, Kosteva AR, Prabhakaran S, Naidech AM (2013) Delayed intraventricular hemorrhage is common and worsens outcomes in intracerebral hemorrhage. Neurology 80:1295–1299

    Article  PubMed  PubMed Central  Google Scholar 

  42. Witsch J, Bruce E, Meyers E, Velazquez A, Schmidt JM, Suwatcharangkoon S et al (2015) Intraventricular hemorrhage expansion in patients with spontaneous intracerebral hemorrhage. Neurology 84:989–994

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yogendrakumar V, Ramsay T, Fergusson D, Demchuk AM, Aviv RI, Rodriguez-Luna D et al (2019) New and expanding ventricular hemorrhage predicts poor outcome in acute intracerebral hemorrhage. Neurology 93:e879–e888

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yogendrakumar V, Ramsay T, Fergusson DA, Demchuk AM, Aviv RI, Rodriguez-Luna D et al (2020) Redefining hematoma expansion with the inclusion of intraventricular hemorrhage growth. Stroke 51:1120–1127

    Article  PubMed  Google Scholar 

  45. Kothari RU, Brott T, Broderick JP, Barsan WG, Sauerbeck LR, Zuccarello M et al (1996) The ABCs of measuring intracerebral hemorrhage volumes. Stroke 27:1304–1305

    Article  CAS  PubMed  Google Scholar 

  46. Broderick JP, Adams HP, Barsan W, Feinberg W, Feldmann E, Grotta J et al (1999) Guidelines for the management of spontaneous intracerebral hemorrhage. Stroke 30:905–915

    Article  CAS  PubMed  Google Scholar 

  47. Morotti A, Brouwers HB, Romero JM, Jessel MJ, Vashkevich A, Schwab K et al (2017) Intensive blood pressure reduction and spot sign in intracerebral hemorrhage: a secondary analysis of a randomized clinical Trial. JAMA Neurol 74:950–960

    Article  PubMed  PubMed Central  Google Scholar 

  48. Demchuk AM, Dowlatshahi D, Rodriguez-Luna D, Molina CA, Blas YS, Dzialowski I et al (2012) Prediction of haematoma growth and outcome in patients with intracerebral haemorrhage using the CT-angiography spot sign (PREDICT): a prospective observational study. Lancet Neurol 11:307–314

    Article  PubMed  Google Scholar 

  49. Delgado Almandoz JE, Yoo AJ, Stone MJ, Schaefer PW, Goldstein JN, Rosand J et al (2009) Systematic characterization of the computed tomography angiography spot sign in primary intracerebral hemorrhage identifies patients at highest risk for hematoma expansion: the spot sign score. Stroke 40:2994–3000

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ruiz-Sandoval JL, Chiquete E, Romero-Vargas S, Padilla-Martínez JJ, González-Cornejo S (2007) Grading scale for prediction of outcome in primary intracerebral hemorrhages. Stroke 38:1641–1644

    Article  PubMed  Google Scholar 

  51. Parry-Jones AR, Abid KA, Napoli MD, Smith CJ, Vail A, Patel HC et al (2013) Accuracy and clinical usefulness of intracerebral hemorrhage grading scores. Stroke 44:1840–1845

    Article  PubMed  Google Scholar 

  52. Hanley DF (2009) Intraventricular hemorrhage: severity factor and treatment target in spontaneous intracerebral hemorrhage. Stroke 40:1533–1538

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tuhrim S, Horowitz DR, Sacher M, Godbold JH (1999) Volume of ventricular blood is an important determinant of outcome in supratentorial intracerebral hemorrhage. Crit Care Med 27:617–621

    Article  CAS  PubMed  Google Scholar 

  54. Steiner T, Diringer MN, Schneider D, Mayer SA, Begtrup K, Broderick J et al (2006) Dynamics of intraventricular hemorrhage in patients with spontaneous intracerebral hemorrhage: risk factors, clinical impact, and effect of hemostatic therapy with recombinant activated factor VII. Neurosurgery 59:767–773 (discussion 773-764)

    Article  PubMed  Google Scholar 

  55. Weimer JM, Nowacki AS, Frontera JA (2016) Withdrawal of life-sustaining therapy in patients with intracranial hemorrhage: self-fulfilling prophecy or accurate prediction of outcome?*. Crit Care Med 44:1161–1172

    Article  PubMed  Google Scholar 

  56. Alkhachroum A, Bustillo AJ, Asdaghi N, Marulanda-Londono E, Gutierrez CM, Samano D et al (2021) Withdrawal of life-sustaining treatment mediates mortality in patients with intracerebral hemorrhage with impaired consciousness. Stroke 52:3891–3898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dowlatshahi D, Hogan MJ, Sharma M, Stotts G, Blacquiere D, Chakraborty S (2013) Ongoing bleeding in acute intracerebral haemorrhage. Lancet 381:152

  58. Lun R, Yogendrakumar V, Demchuk AM, Aviv RI, Rodriguez-Luna D, Molina CA et al (2020) Calculation of prognostic scores, using delayed imaging, outperforms baseline assessments in acute intracerebral hemorrhage. Stroke 51:1107–1110

    Article  PubMed  Google Scholar 

  59. Maas MB, Francis BA, Sangha RS, Lizza BD, Liotta EM, Naidech AM (2017) Refining prognosis for intracerebral hemorrhage by early reassessment. Cerebrovasc Dis 43:110–116

    Article  PubMed  Google Scholar 

  60. Yang W-S, Shen Y-Q, Wei X, Zhao L-B, Liu Q-J, Xie X-F, Zhang ZW, Deng L, Lv XN, Zhang SQ, Li XH, Li Q, Xie P (2021) New prediction models of functional outcome in acute intracerebral hemorrhage: the dICH score and uICH score. Frontiers in Neurology 12:655800. https://doi.org/10.3389/fneur.2021.655800

Download references

Author information

Authors and Affiliations

Authors

Contributions

Te-Chang Wu: conceptualization, data curation, methodology and writing—original draft; Yan-Lin Liu: investigation, software, visualization and writing—original draft; Jeon-Hor Chen: conceptualization, methodology and writing—review and editing; Chung-Han Ho: formal analysis; Yang Zhang: investigation, software; Min-Ying Su: conceptualization, methodology and writing—review and editing.

Corresponding author

Correspondence to Te-Chang Wu.

Ethics declarations

Ethics approval and consent to participate

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This retrospective study was approved by the Institutional Review Board of our hospital, Chi-Mei Medical Center (Date 2018–09-21/ No 10709–010). The requirement to obtain informed consent was waived due to its retrospective nature.

Competing interests

The authors declare no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, TC., Liu, YL., Chen, JH. et al. Prediction of poor outcome in stroke patients using radiomics analysis of intraparenchymal and intraventricular hemorrhage and clinical factors. Neurol Sci 44, 1289–1300 (2023). https://doi.org/10.1007/s10072-022-06528-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-022-06528-4

Keywords

Navigation