Skip to main content
Log in

Effects of monotherapy with a monoamine oxidase B inhibitor on motor symptoms in Parkinson’s disease are dependent on frontal function

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

Monotherapy with monoamine oxidase B (MAO-B) inhibitors enhances the level of endogenous dopamine in treatment for Parkinson’s disease (PD) and provides some benefits. Certain neuropsychiatric functions are also regulated by central dopaminergic activity.

Aim

To investigate the relationship of the efficacy of monotherapy with MAO-B inhibitors on motor symptoms in PD with baseline cognitive function.

Patients and methods

Outcomes were examined for 27 consecutive drug-naïve PD patients who received initial treatment with a MAO-B inhibitor (selegiline: 11, rasagiline: 16). Selegiline was titrated to an optimal dose. The dose of rasagiline was fixed at 1 mg/day. Motor symptoms were assessed using the Movement Disorder Society-Unified Parkinson’s Disease Rating Scale part III before treatment and after the efficacy reached a plateau within 19 weeks after drug initiation, and the % improvement in motor symptoms was calculated. Pre-treatment cognitive function was assessed using the Montreal Cognitive Assessment (MoCA) and Frontal Assessment Battery (FAB). Correlations of % improvement in motor symptoms and baseline cognitive assessments were examined using Spearman correlation coefficients and multiple regression analysis.

Results

In all patients, the mean % improvement in motor symptoms was 46.5% (range 0–83.3%). Spearman correlation coefficients showed the % improvement in motor symptoms was correlated with FAB (r = 0.631, p < 0.001). In multiple regression analysis with patient background factors as independent variables, only FAB was associated with improvement in motor symptoms in the MAO-B group.

Conclusion

Better FAB scores predict a significant improvement in motor symptoms with treatment with MAO-B inhibitors, suggesting high activity of endogenous dopamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. PD Med Collaborative Group, Gray R, Ives N et al (2014) Long-term effectiveness of dopamine agonists and monoamine oxidase B inhibitors compared with levodopa as initial treatment for Parkinson’s disease (PD MED): a large, open-label, pragmatic randomised trial. Lancet 384(9949):1196–1205. https://doi.org/10.1016/S0140-6736(14)60683-8

    Article  CAS  Google Scholar 

  2. Jankovic J, Poewe W (2012) Therapies in Parkinson’s disease. Curr Opin Neurol 25(4):433–447. https://doi.org/10.1097/WCO.0b013e3283542fc2

    Article  CAS  PubMed  Google Scholar 

  3. Pålhagen S, Heinonen EH, Hägglund J et al (1998) Selegiline delays the onset of disability in de novo parkinsonian patients. Swed Parkins Study Group Neurol 51(2):520–525. https://doi.org/10.1212/wnl.51.2.520

    Article  Google Scholar 

  4. Murakami H, Nohara T, Uchiyama M et al (2017) Accumulation of 123I-ioflupane is a useful marker of the efficacy of selegiline monotherapy in drug-naïve Parkinson’s disease. Front Aging Neurosci 9:321. https://doi.org/10.3389/fnagi.2017.00321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kehagia AA, Barker RA, Robbins TW (2010) Neuropsychological and clinical heterogeneity of cognitive impairment and dementia in patients with Parkinson’s disease. Lancet Neurol 9(12):1200–1213. https://doi.org/10.1016/S1474-4422(10)70212-X

    Article  PubMed  Google Scholar 

  6. Postuma RB, Berg D, Stern M et al (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30(12):1591–1601. https://doi.org/10.1002/mds.26424

    Article  PubMed  Google Scholar 

  7. Goetz CG, Tilley BC, Shaftman SR et al (2008) Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord 23(15):2129–2170. https://doi.org/10.1002/mds.22340

    Article  PubMed  Google Scholar 

  8. Nasreddine ZS, Phillips NA, Bédirian V et al (2005) The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 53(4):695–699. https://doi.org/10.1111/j.1532-5415.2005.53221.x

    Article  PubMed  Google Scholar 

  9. Dubois B, Slachevsky A, Litvan I, Pillon B (2000) The FAB: a Frontal Assessment Battery at bedside. Neurology 55(11):1621–1626. https://doi.org/10.1212/wnl.55.11.1621

    Article  CAS  PubMed  Google Scholar 

  10. Brogley JE (2019) DaTQUANT: the future of diagnosing Parkinson disease. J Nucl Med Technol 47(1):21–26. https://doi.org/10.2967/jnmt.118.222349

    Article  PubMed  Google Scholar 

  11. Murakami H, Shiraishi T, Umehara T et al (2021) Face pareidolia is associated with right striatal dysfunction in drug-naïve patients with Parkinson’s disease. Neurol Sci 42(12):5327–5334. https://doi.org/10.1007/s10072-021-05238-7

    Article  PubMed  Google Scholar 

  12. Tomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE (2010) Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord 25(15):2649–2653. https://doi.org/10.1002/mds.23429

    Article  PubMed  Google Scholar 

  13. Ono T, Takahashi M, Nakamura Y et al (1991) Phase I study of FPF1100—the safety and pharmacokinetics study on single and 7 days repeated oral administration. Rinsho Iyaku 7(7):1475–1498 ([Japanese article])

    Google Scholar 

  14. Bench CJ, Price GW, Lammertsma AA et al (1991) Measurement of human cerebral monoamine oxidase type B (MAO-B) activity with positron emission tomography (PET): a dose ranging study with the reversible inhibitor Ro 19–6327. Eur J Clin Pharmacol 40(2):169–173. https://doi.org/10.1007/BF00280072

    Article  CAS  PubMed  Google Scholar 

  15. Thébault JJ, Guillaume M, Levy R (2004) Tolerability, safety, pharmacodynamics, and pharmacokinetics of rasagiline: a potent, selective, and irreversible monoamine oxidase type B inhibitor. Pharmacother 24(10):1295–1305. https://doi.org/10.1592/phco.24.14.1295.43156

    Article  Google Scholar 

  16. Kehagia AA, Barker RA, Robbins TW (2013) Cognitive impairment in Parkinson’s disease: the dual syndrome hypothesis. Neurodegener Dis 11(2):79–92. https://doi.org/10.1159/000341998

    Article  PubMed  Google Scholar 

  17. Han L, Lu J, Tang Y et al (2021) Dopaminergic and metabolic correlations with cognitive domains in non-demented Parkinson’s disease. Front Aging Neurosci 13:627356. https://doi.org/10.3389/fnagi.2021.627356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nobili F, Campus C, Arnaldi D et al (2010) Cognitive-nigrostriatal relationships in de novo, drug-naïve Parkinson’s disease patients: a [I-123]FP-CIT SPECT study. Mov Disord 25(1):35–43. https://doi.org/10.1002/mds.22899

    Article  PubMed  Google Scholar 

  19. Siepel FJ, Brønnick KS, Booij J et al (2014) Cognitive executive impairment and dopaminergic deficits in de novo Parkinson’s disease. Mov Disord 29(14):1802–1808. https://doi.org/10.1002/mds.26051

    Article  CAS  PubMed  Google Scholar 

  20. Murakami H, Nohara T, Shozawa H et al (2017) Effects of dopaminergic drug adjustment on executive function in different clinical stages of Parkinson’s disease. Neuropsychiatr Dis Treat 13:2719–2726. https://doi.org/10.2147/NDT.S145916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cools R, D’Esposito M (2011) Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biol Psychiatry 69(12):e113-125. https://doi.org/10.1016/j.biopsych.2011.03.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Macdonald PA, Monchi O (2011) Differential effects of dopaminergic therapies on dorsal and ventral striatum in Parkinson’s disease: implications for cognitive function. Parkinsons Dis 2011:572743. https://doi.org/10.4061/2011/572743

    Article  PubMed  PubMed Central  Google Scholar 

  23. Caminiti SP, Presotto L, Baroncini D et al (2017) Axonal damage and loss of connectivity in nigrostriatal and mesolimbic dopamine pathways in early Parkinson’s disease. Neuroimage Clin 14:734–740. https://doi.org/10.1016/j.nicl.2017.03.011

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N Engl J Med 318(14):876–880. https://doi.org/10.1056/NEJM198804073181402

    Article  CAS  PubMed  Google Scholar 

  25. de la Fuente-Fernández R, Ruth TJ, Sossi V, Schulzer M, Calne DB, Stoessl AJ (2001) Expectation and dopamine release: mechanism of the placebo effect in Parkinson’s disease. Science 293(5532):1164–1166. https://doi.org/10.1126/science.1060937

    Article  PubMed  Google Scholar 

  26. de la Fuente-Fernández R, Phillips AG, Zamburlini M et al (2002) Dopamine release in human ventral striatum and expectation of reward. Behav Brain Res 136(2):359–363. https://doi.org/10.1016/s0166-4328(02)00130-4

    Article  PubMed  Google Scholar 

  27. Mahoney JJ, Haut MW, Hodder SL et al (2021) Deep brain stimulation of the nucleus accumbens/ventral capsule for severe and intractable opioid and benzodiazepine use disorder. Exp Clin Psychopharmacol 29(2):210–215. https://doi.org/10.1037/pha0000453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Volkow ND, Wang GJ, Fowler JS, Tomasi D, Telang F (2011) Addiction: beyond dopamine reward circuitry. Proc Natl Acad Sci U S A 108(37):15037–15042. https://doi.org/10.1073/pnas.1010654108

    Article  PubMed  PubMed Central  Google Scholar 

  29. Perez XA, Parameswaran N, Huang LZ, O’Leary KT, Quik M (2008) Pre-synaptic dopaminergic compensation after moderate nigrostriatal damage in non-human primates. J Neurochem 105(5):1861–1872. https://doi.org/10.1111/j.1471-4159.2008.05268.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bergstrom BP, Sanberg SG, Andersson M, Mithyantha J, Carroll FI, Garris PA (2011) Functional reorganization of the presynaptic dopaminergic terminal in parkinsonism. Neurosci 193:310–322. https://doi.org/10.1016/j.neuroscience.2011.07.029

    Article  CAS  Google Scholar 

  31. Lee CS, Samii A, Sossi V et al (2000) In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson’s disease. Ann Neurol 47(4):493–503

    Article  CAS  PubMed  Google Scholar 

  32. Knoll J (1998) (-)Deprenyl (selegiline), a catecholaminergic activity enhancer (CAE) substance acting in the brain. Pharmacol Toxicol 82(2):57–66. https://doi.org/10.1111/j.1600-0773.1998.tb01399.x

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) (21K03075), and by the Jikei University Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidetomo Murakami.

Ethics declarations

Ethical approval and consent to participate

The study was approved by the Ethics Committee of The Jikei University School of Medicine (27-315 (8200)), and was performed in accordance with the Declaration of Helsinki. Written informed consent was obtained from all participants.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 13.8 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murakami, H., Okumura, M., Ozawa, M. et al. Effects of monotherapy with a monoamine oxidase B inhibitor on motor symptoms in Parkinson’s disease are dependent on frontal function. Neurol Sci 44, 913–918 (2023). https://doi.org/10.1007/s10072-022-06499-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-022-06499-6

Keywords

Navigation