Skip to main content
Log in

Robot-assisted distal training improves upper limb dexterity and function after stroke: a systematic review and meta-regression

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Introduction

Stroke is one of the top 10 causes of death worldwide, and more than half of stroke patients face distal upper extremity dysfunction. Considering that robot-assisted training may be effective in improving distal upper extremity function, the review evaluated the effect of robot-assisted distal training on motor function, hand dexterity, and spasticity after stroke.

Methods

Eleven databases were systematically searched for randomised controlled trials (RCTs) from inception until Aug 28, 2021. Meta-analysis and meta-regression were performed to investigate the overall effect and source of heterogeneity, respectively.

Results

Twenty-two trials involving 758 participants were included in this systematic review. The overall effect of robot-assisted distal training on the motor function of the wrists and hands was significant improvement (MD = 3.92; 95% CI, 3.04–4.80; P < 0.001). The robot-assisted training had a significantly beneficial effect on other motor functions (MD = 2.84; 95% CI, 1.54–4.14; P < 0.001); dexterity (MD = 9.01; 95% CI, -12.07–-5.95; P < 0.001), spasticity, upper extremity strength (SMD = 0.42; 95% CI, 0.07–0.78; P = 0.02) and activities of daily living (SMD = 0.70; 95% CI, 0.29–1.23; P < 0.001). A series of subgroup analyses showed preferable design and effective regime of training. Meta-regression indicated the statistically significant effect of the year of trial, country, and duration on the effectiveness of training.

Conclusion

Robot-assisted distal training has a significant effect on motor function, dexterity and spasticity of the upper extremity, compared to conventional therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. WHO (2018). The top 10 causes of death. https://www.who.int/en/news-room/fact-sheets/detail/the-top-10-causes-of-death.

  2. Feigin VL, Roth GA, Naghavi M, Parmar P, Krishnamurthi R, Chugh S et al (2016) Global burden of stroke and risk factors in 188 countries, during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet Neuro 15:913–924. https://doi.org/10.1016/S1474-4422(16)30073-4

    Article  Google Scholar 

  3. Plantin J, Laurencikas E, Lindberg P, Borg J (2013) Biomarkers for prediction of hand function after stroke — /INS;The ProHand study protocol. J Neurol Sci 333:e555–e556. https://doi.org/10.1016/j.jns.2013.07.1949

    Article  Google Scholar 

  4. O’Brien A, Bertolucci F, Torrealba-Acosta G, Huerta R, Fregni F, Thibaut A (2018) Non-invasive brain stimulation for fine motor improvement after stroke: a meta-analysis. Eur J Neurol 25:1017–1026. https://doi.org/10.1111/ene.13643

    Article  CAS  PubMed  Google Scholar 

  5. Yue Z, Zhang X (2017) Hand Rehabilitation Robotics on Poststroke Motor Recovery. Behav Neurol 2017:1–20. https://doi.org/10.1155/2017/3908135

    Article  Google Scholar 

  6. Mehrholz J, Platz T, Kugler J, Pohl M (2015) Electromechanical-assisted training for improving upper limb function and disability after stroke. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD006876

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bernhardt J, Mehrholz J (2019) Robotic-assisted training after stroke: RATULS advances science. Lancet 394:6–8. https://doi.org/10.1016/S0140-6736(19)31156-0

    Article  PubMed  Google Scholar 

  8. Morone G, Paolucci S, Cherubini A, De Angelis D, Venturiero V, Coiro P et al (2017) Robot-assisted gait training for stroke patients: current state of the art and perspectives of robotics. Neuropsychiatr Dis Treat 13:1303

    Article  Google Scholar 

  9. Mehrholz J, Pohl M, Platz T, Kugler J, Elsner B (2018) Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD006876.pub5

    Article  PubMed  PubMed Central  Google Scholar 

  10. Basteris A, Nijenhuis S, Stienen A, Buurke J, Prange G, Amirabdollahian F (2014) Training modalities in robot-mediated upper limb rehabilitation in stroke: A framework for classification based on a systematic review. J Neuroeng Rehabil 11:111. https://doi.org/10.1186/1743-0003-11-111

    Article  PubMed  PubMed Central  Google Scholar 

  11. Molteni F, Gasperini G, Gaffuri M, Colombo M, Giovanzana C, Lorenzon C et al (2017). Wearable robotic exoskeleton for overground gait training in sub-acute and chronic hemiparetic stroke patients: preliminary results. Eur J Phys Rehabil Med 53:676–84. https://doi.org/10.23736/s1973-9087.17.04591-9

  12. Poli P, Morone G, Rosati G, Masiero S (2013) Robotic technologies and rehabilitation: new tools for stroke patients’ therapy. Biomed Res Int 2013:153872. https://doi.org/10.1155/2013/153872

    Article  PubMed  PubMed Central  Google Scholar 

  13. Frolov AA, Húsek D, Biryukova EV, Bobrov PD, Mokienko OA, Alexandrov A (2017) Principles of motor recovery in post-stroke patients using hand exoskeleton controlled by the brain-computer interface based on motor imagery. Neural Netw World 27:107

    Article  Google Scholar 

  14. Bos R, Haarman C, Stortelder T, Nizamis K, Herder J, Stienen A et al (2016) A structured overview of trends and technologies used in dynamic hand orthoses. J Neuroeng Rehabil 13:62. https://doi.org/10.1186/s12984-016-0168-z

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lo HS, Xie SQ (2012) Exoskeleton robots for upper-limb rehabilitation: State of the art and future prospects. Med Eng Phys 34:261–268

    Article  Google Scholar 

  16. Hennes M, Bollue K, Arenbeck H, Disselhorst-Klug C (2015). A proposal for patient-tailored supervision of movement performance during end-effector-based robot-assisted rehabilitation of the upper extremities. Biomed Tech (Berl) 60https://doi.org/10.1515/bmt-2014-0021

  17. Bertani R, Melegari C, De Cola MC, Bramanti A, Bramanti P, Calabro RS (2017) Effects of robot-assisted upper limb rehabilitation in stroke patients: a systematic review with meta-analysis. Neurol Sci 38:1561–1569. https://doi.org/10.1007/s10072-017-2995-5

    Article  PubMed  Google Scholar 

  18. Kwakkel G, Kollen BJ, Krebs HI (2008) Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair 22:111–121. https://doi.org/10.1177/1545968307305457

    Article  PubMed  Google Scholar 

  19. Maciejasz P, Eschweiler J, Gerlach-Hahn K, Jansen-Troy A, Leonhardt S (2014) A survey on robotic devices for upper limb rehabilitation. J Neuroeng Rehabil 11:3. https://doi.org/10.1186/1743-0003-11-3

    Article  PubMed  PubMed Central  Google Scholar 

  20. Norouzi-Gheidari N, Archambault P, Fung J (2012) Effects of robot-assisted therapy on stroke rehabilitation in upper limbs: Systematic review and meta-analysis of the literature. J Rehabil Res Dev 49:479–496. https://doi.org/10.1682/JRRD.2010.10.0210

    Article  PubMed  Google Scholar 

  21. Prange G, Jannink M, Groothuis-Oudshoorn C, Hermens H, Ijzerman M (2006) Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J Rehabil Res Dev 43:171–184. https://doi.org/10.1682/JRRD.2005.04.0076

    Article  PubMed  Google Scholar 

  22. Zhang C, Li-Tsang CW, Au RK (2017) Robotic approaches for the rehabilitation of upper limb recovery after stroke: a systematic review and meta-analysis. Int J Rehabil Res 40:19–28. https://doi.org/10.1097/mrr.0000000000000204

    Article  CAS  PubMed  Google Scholar 

  23. Zheng Q-X, Ge L, Wang CC, Ma Q-S, Liao Y-T, Huang P-P et al (2019) Robot-assisted therapy for balance function rehabilitation after stroke: A systematic review and meta-analysis. Int J Nurs Stud 95:7–18. https://doi.org/10.1016/j.ijnurstu.2019.03.015

    Article  PubMed  Google Scholar 

  24. Guyatt GH, Oxman AD, Schunemann HJ, Tugwell P, Knottnerus A (2011) GRADE guidelines: a new series of articles in the Journal of Clinical Epidemiology. J Clin Epidemiol 64:380–382. https://doi.org/10.1016/j.jclinepi.2010.09.011

    Article  PubMed  Google Scholar 

  25. Moher D, Liberati A, Tetzlaff J, Altman D G, Group a t P (2009) Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Ann Intern Med 151:264–269. https://doi.org/10.7326/0003-4819-151-4-200908180-00135

    Article  Google Scholar 

  26. Higgins J P T (2019). Cochrane Handbook for Systematic Reviews of Interventions version 6.0 (updated July 2019). https://training.cochrane.org/handbook.

  27. Gurevitch J, Koricheva J, Nakagawa S, Stewart G (2018) Meta-analysis and the science of research synthesis. Nature 555:175–182. https://doi.org/10.1038/nature25753

    Article  CAS  PubMed  Google Scholar 

  28. Sterne JAC, Sutton AJ, Ioannidis JPA, Terrin N, Jones DR, Lau J et al (2011) Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 343:d4002. https://doi.org/10.1136/bmj.d4002

    Article  PubMed  Google Scholar 

  29. Lin L, Chu H (2018) Quantifying publication bias in meta-analysis. Biometrics 74:785–794. https://doi.org/10.1111/biom.12817

    Article  PubMed  Google Scholar 

  30. Sawilowsky S (2009). New Effect Size Rules of Thumb. J Mod Appl Stat Methods 8:597–99. https://doi.org/10.22237/jmasm/1257035100

  31. Borenstein M, Hedges L, Higgins J, Rothstein H (2010) A basic introduction to fixed and random effects models for meta-analysis. Res Synth Methods 1:97–111. https://doi.org/10.1002/jrsm.12

    Article  PubMed  Google Scholar 

  32. Ang K K, Guan C, Phua K S, Wang C, Zhou L, Tang K Y et al (2014). Brain-computer interface-based robotic end effector system for wrist and hand rehabilitation: results of a three-armed randomized controlled trial for chronic stroke. Front Neuroeng 7https://doi.org/10.3389/fneng.2014.00030

  33. Calabro RS, Accorinti M, Porcari B, Carioti L, Ciatto L, Billeri L et al (2019) Does hand robotic rehabilitation improve motor function by rebalancing interhemispheric connectivity after chronic stroke? Encouraging data from a randomised-clinical-trial. Clin Neurophysiol 130:767–780. https://doi.org/10.1016/j.clinph.2019.02.013

    Article  PubMed  Google Scholar 

  34. Fu Z, Jiang R, Pan C, Chen Y, Ye Z, Hu N et al (2017) Effects of robot-assisted task-oriented training on hand function after stroke [J]. Chin J Rehabil Theory Pract 23:338–344

    Google Scholar 

  35. Hsieh YW, Lin KC, Wu CY, Shih TY, Li MW, Chen CL (2018) Comparison of proximal versus distal upper-limb robotic rehabilitation on motor performance after stroke: a cluster controlled trial. Sci Rep 8:2091. https://doi.org/10.1038/s41598-018-20330-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hung C S, Hsieh Y W, Wu C Y, Lin K C, Lin J C, Yeh L M et al (2019). Comparative Assessment of Two Robot-Assisted Therapies for the Upper Extremity in People With Chronic Stroke. Am J Occup Ther 73:7301205010p1–10p9. https://doi.org/10.5014/ajot.2019.022368

  37. Hwang CH, Seong JW, Son DS (2012) Individual finger synchronized robot-assisted hand rehabilitation in subacute to chronic stroke: a prospective randomized clinical trial of efficacy. Clin Rehabil 26:696–704. https://doi.org/10.1177/0269215511431473

    Article  PubMed  Google Scholar 

  38. Lee H C, Kuo F L, Lin Y N, Liou T H, Huang S W (2020). Effects of Robot-Assisted Rehabilitation on Hand Function of People With Stroke: A Randomized, Crossover-Controlled, Assessor-Blinded Study. Am J Occup Ther 75:7501205020p1.

  39. Liu L, Zhu L, Shan G, Liu X, Cao L, He B et al (2016) Robotic rehabilitation for upper-extremity function rehabilitation in chronic stroke patients with hemiplegia: an efficacy analysis. Chin J Cerebrovasc Dis 13:579–583

    CAS  Google Scholar 

  40. Liu Y, Pan C, Ye Z, H N, Luo L, C Y, (2017) Effect of Virtual Reality Robotic Hand on Hand Motor Function and Activities of Daily Living of Patients after Stroke. Chin J Rehabil Theory Pract 23:19–22

    Google Scholar 

  41. Orihuela-Espina F, Roldán GF, Sánchez-Villavicencio I, Palafox L, Leder R, Sucar LE et al (2016) Robot training for hand motor recovery in subacute stroke patients: A randomized controlled trial. J Hand Ther 29:51–57. https://doi.org/10.1016/j.jht.2015.11.006

    Article  PubMed  Google Scholar 

  42. Qian Q, Nam C, Guo Z, Huang Y, Hu X, Ng SC et al (2019) Distal versus proximal - an investigation on different supportive strategies by robots for upper limb rehabilitation after stroke: a randomized controlled trial. J Neuroeng Rehabil 16:64. https://doi.org/10.1186/s12984-019-0537-5

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ranzani R, Lambercy O, Metzger J C, Califfi A, assert R G (2020). Neurocognitive robot-assisted rehabilitation of hand function: a randomized control trial on motor recovery in subacute stroke.

  44. Sale P, Mazzoleni S, Lombardi V, Galafate D, Massimiani MP, Posteraro F et al (2014) Recovery of hand function with robot-assisted therapy in acute stroke patients: a randomized-controlled trial. Int J Rehabil Res 37:236–242. https://doi.org/10.1097/mrr.0000000000000059

    Article  PubMed  Google Scholar 

  45. Shin JH, Kim MY, Lee JY, Jeon YJ, Kim S, Lee S et al (2016) Effects of virtual reality-based rehabilitation on distal upper extremity function and health-related quality of life: a single-blinded, randomized controlled trial. J Neuroeng Rehabil 13:17. https://doi.org/10.1186/s12984-016-0125-x

    Article  PubMed  PubMed Central  Google Scholar 

  46. Thielbar KO, Lord TJ, Fischer HC, Lazzaro EC, Barth KC, Stoykov ME et al (2014) Training finger individuation with a mechatronic-virtual reality system leads to improved fine motor control post-stroke. J Neuroeng Rehabil 11:171. https://doi.org/10.1186/1743-0003-11-171

    Article  PubMed  PubMed Central  Google Scholar 

  47. Vanoglio F, Bernocchi P, Mulè C, Garofali F, Mora C, Taveggia G et al (2016) Feasibility and efficacy of a robotic device for hand rehabilitation in hemiplegic stroke patients: a randomized pilot controlled study. Clin Rehabil 31:351–360. https://doi.org/10.1177/0269215516642606

    Article  PubMed  Google Scholar 

  48. Villafañe J H, Taveggia G, Galeri S, Bissolotti L, Mullè C, Imperio G et al (2018). Efficacy of Short-Term Robot-Assisted Rehabilitation in Patients With Hand Paralysis After Stroke: A Randomized Clinical Trial. Hand (New York, N.Y.) 13:95–102. https://doi.org/10.1177/1558944717692096

  49. Wolf SL, Sahu K, Bay RC, Buchanan S, Reiss A, Linder S et al (2015) The HAAPI (Home Arm Assistance Progression Initiative) Trial: A Novel Robotics Delivery Approach in Stroke Rehabilitation. Neurorehabil Neural Repair 29:958–968. https://doi.org/10.1177/1545968315575612

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wu CY, Yang CL, Chuang LL, Lin KC, Chen HC, Chen MD et al (2012) Effect of therapist-based versus robot-assisted bilateral arm training on motor control, functional performance, and quality of life after chronic stroke: a clinical trial. Phys Ther 92:1006–1016. https://doi.org/10.2522/ptj.20110282

    Article  PubMed  Google Scholar 

  51. Xiao C, Pan C, C Y, Ye Z, Fang L, Luo L et al (2018). A robot exoskeleton can improve hand function early after stroke. Chin J Phys Med Rehabil 40:100-05https://doi.org/10.3760/cma.j.issn.0254-1424.2018.02.005

  52. Yang CL, Lin KC, Chen HC, Wu CY, Chen CL (2012) Pilot comparative study of unilateral and bilateral robot-assisted training on upper-extremity performance in patients with stroke. Am J Occup Ther 66:198–206. https://doi.org/10.5014/ajot.2012.003103

    Article  PubMed  Google Scholar 

  53. Zhu F, WU J, You P (2017). Effects of combining robot-assisted therapy with coordination of reaching to grasp an object on hand motor impairment in patients with chronic stroke. Chin J Prev Contr Chron Dis 25:762-64

  54. Kahan B, Cro S, Dore C, Bratton D, Rehal S, Maskell N et al (2014) Reducing bias in open-label trials where blinded outcome assessment is not feasible: Strategies from two randomised trials. Trials 15:456. https://doi.org/10.1186/1745-6215-15-456

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lum PS, Godfrey SB, Brokaw EB, Holley RJ, Nichols D (2012) Robotic approaches for rehabilitation of hand function after stroke. Am J Phys Med Rehabil 91:S242–S254

    Article  Google Scholar 

  56. Gustus A, Stillfried G, Visser J, Jörntell H, van der Smagt P (2012). Human hand modelling: kinematics, dynamics, applications. Biol Cybern 106https://doi.org/10.1007/s00422-012-0532-4

  57. Remsik A, Young B, Vermilyea R, Kiekoefer L, Abrams J, Elmore S et al (2016). A review of the progression and future implications of brain-computer interface therapies for restoration of distal upper extremity motor function after stroke. Expert Rev Med Devices 13https://doi.org/10.1080/17434440.2016.1174572

  58. Hu X-L, K-y TR, Ho NSK, Xue J-j, Rong W, Li LSW (2015) Wrist Rehabilitation Assisted by an Electromyography-Driven Neuromuscular Electrical Stimulation Robot After Stroke. Neurorehabil Neural Repair 29:767–776. https://doi.org/10.1177/1545968314565510

    Article  PubMed  Google Scholar 

  59. Takeuchi N, Izumi S-I (2012) Maladaptive Plasticity for Motor Recovery after Stroke: Mechanisms and Approaches. Neural Plast 2012:359728. https://doi.org/10.1155/2012/359728

    Article  PubMed  PubMed Central  Google Scholar 

  60. Gopura R, Bandara S, Kiguchi K, Mann G K I (2015). Developments in hardware systems of active upper-limb exoskeleton robots: A review. Rob Auton Syst 75https://doi.org/10.1016/j.robot.2015.10.001

  61. Delph M, Fischer S, Gauthier P, Martinez-Luna C, Clancy E, Fischer G (2013). A soft robotic exomusculature glove with integrated sEMG sensing for hand rehabilitation, International Conference on Rehabilitation Robotics, pp. 1–7.

  62. Sergi F, Krebs H I, Groissier B, Rykman A, Guglielmelli E, Volpe B T et al (2011). Predicting efficacy of robot-aided rehabilitation in chronic stroke patients using an MRI-compatible robotic device, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 7470–73.

  63. Voils S, Carlson A (2014). Association of Deep-Vein Thrombosis (DVT) With Missed Doses of Prophylactic Antithrombotic Medications in ICU Patients: A Case-Control Study. Ann Pharmacother 48https://doi.org/10.1177/1060028014539920

  64. Heo P, Gu G, Lee S-j, Rhee K, Kim J (2012). Current Hand Exoskeleton Technologies for Rehabilitation and Assistive Engineering. Int J Precis Eng Manuf 13https://doi.org/10.1007/s12541-012-0107-2

  65. Jin W, Chen J, Shi F, Yang W, Zhang Y, Liu Y et al (2015) Home-based tele-supervising rehabilitation for brain infarction patients (HTRBIP): Study protocol for a randomized controlled trial. Trials 16:585. https://doi.org/10.1186/s13063-015-0585-5

    Article  Google Scholar 

  66. Borglin G, Richards D (2009) Bias in experimental nursing research: Strategies to improve the quality and explanatory power of nursing science. Int J Nurs Stud 47:123–128. https://doi.org/10.1016/j.ijnurstu.2009.06.01

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank authors for sending further information on their studies for the purpose of our systematic review.

Author information

Authors and Affiliations

Authors

Contributions

MLZ and was involved in generating search strategies and performing the literature search, screening articles, extracting and analysing data, and writing the manuscript. YL was involved in developing the research question, planning the search, guiding the article screening and selection process, providing help in the interpretation of data and revising the manuscript. GNW was involved in the article screening and selection process. AW was involved in the article investigation. LJC was involved in the article investigation, performing the literature search, providing help in the interpretation of data and revising the manuscript, reference editing and revising and formatting of the manuscript. All authors approved of the last version of manuscript.

Corresponding author

Correspondence to Ying Lau.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 154 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Wang, G., Wang, A. et al. Robot-assisted distal training improves upper limb dexterity and function after stroke: a systematic review and meta-regression. Neurol Sci 43, 1641–1657 (2022). https://doi.org/10.1007/s10072-022-05913-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-022-05913-3

Keywords

Navigation