Skip to main content

Advertisement

Log in

Hemostasis components in cerebral amyloid angiopathy and Alzheimer’s disease

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Increased cerebrovascular amyloid-β (Aβ) deposition represents the main pathogenic mechanisms characterizing Alzheimer’s disease (AD) and cerebral amyloid angiopathy (CAA). Whereas an increasing number of studies define the contribution of fibrin(ogen) to neurodegeneration, how other hemostasis factors might be pleiotropically involved in the AD and CAA remains overlooked. Although traditionally regarded as pertaining to hemostasis, these proteins are also modulators of inflammation and angiogenesis, and exert cytoprotective functions. This review discusses the contribution of hemostasis components to Aβ cerebrovascular deposition, which settle the way to endothelial and blood-brain barrier dysfunction, vessel fragility, cerebral bleeding, and the associated cognitive changes. From the primary hemostasis, the process that refers to platelet aggregation, we discuss evidence regarding the von Willebrand factor (vWF) and its regulator ADAMTS13. Then, from the secondary hemostasis, we focus on tissue factor, which triggers the extrinsic coagulation cascade, and on the main inhibitors of coagulation, i.e., tissue factor pathway inhibitor (TFPI), and the components of protein C pathway. Last, from the tertiary hemostasis, we discuss evidence on FXIII, involved in fibrin cross-linking, and on components of fibrinolysis, including tissue-type plasminogen activator (tPA), urokinase-type plasminogen activator (uPA) and its receptor uPA(R), and plasminogen activator inhibitor-1 (PAI-1). Increased knowledge on contributors of Aβ-related disease progression may favor new therapeutic approaches for early modifiable risk factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Greenberg SM, Bacskai BJ, Hernandez-Guillamon M, Pruzin J, Sperling R, van Veluw SJ (2020) Cerebral amyloid angiopathy and Alzheimer disease - one peptide, two pathways. Nat Rev Neurol 16:30–42. https://doi.org/10.1038/s41582-019-0281-2

    Article  CAS  PubMed  Google Scholar 

  2. Carare RO, Aldea R, Agarwal N, Bacskai BJ, Bechman I, Boche D, Bu G, Bulters D, Clemens A, Counts SE, Leon M, Eide PK, Fossati S, Greenberg SM, Hamel E, Hawkes CA, Koronyo-Hamaoui M, Hainsworth AH, Holtzman D, Ihara M, Jefferson A, Kalaria RN, Kipps CM, Kanninen KM, Leinonen V, McLaurin JA, Miners S, Malm T, Nicoll JAR, Piazza F, Paul G, Rich SM, Saito S, Shih A, Scholtzova H, Snyder H, Snyder P, Thormodsson FR, Veluw SJ, Weller RO, Werring DJ, Wilcock D, Wilson MR, Zlokovic BV, Verma A (2020) Clearance of interstitial fluid (ISF) and CSF (CLIC) group-part of Vascular Professional Interest Area (PIA): cerebrovascular disease and the failure of elimination of amyloid-beta from the brain and retina with age and Alzheimer’s disease—opportunities for therapy. Alzheimers Dement 12:e12053. https://doi.org/10.1002/dad2.12053

    Article  Google Scholar 

  3. Atwood CS, Bowen RL, Smith MA, Perry G (2003) Cerebrovascular requirement for sealant, anti-coagulant and remodeling molecules that allow for the maintenance of vascular integrity and blood supply. Brain Res Brain Res Rev 43:164–178

    Article  CAS  Google Scholar 

  4. Sweeney MD, Kisler K, Montagne A, Toga AW, Zlokovic BV (2018) The role of brain vasculature in neurodegenerative disorders. Nat Neurosci 21:1318–1331. https://doi.org/10.1038/s41593-018-0234-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Merlini M, Rafalski VA, Rios Coronado PE, Gill TM, Ellisman M, Muthukumar G, Subramanian KS, Ryu JK, Syme CA, Davalos D, Seeley WW, Mucke L, Nelson RB, Akassoglou K (2019) Fibrinogen induces microglia-mediated spine elimination and cognitive impairment in an Alzheimer’s disease model. Neuron. 101(1099-1108):e1096. https://doi.org/10.1016/j.neuron.2019.01.014

    Article  CAS  Google Scholar 

  6. Ryu JK, Petersen MA, Murray SG, Baeten KM, Meyer-Franke A, Chan JP, Vagena E, Bedard C, Machado MR, Coronado PER, Prod'homme T, Charo IF, Lassmann H, Degen JL, Zamvil SS, Akassoglou K (2015) Blood coagulation protein fibrinogen promotes autoimmunity and demyelination via chemokine release and antigen presentation. Nat Commun 6:8164. https://doi.org/10.1038/ncomms9164

    Article  PubMed  Google Scholar 

  7. Ryu JK, Rafalski VA, Meyer-Franke A, Adams RA, Poda SB, Rios Coronado PE, Pedersen LØ, Menon V, Baeten KM, Sikorski SL, Bedard C, Hanspers K, Bardehle S, Mendiola AS, Davalos D, Machado MR, Chan JP, Plastira I, Petersen MA, Pfaff SJ, Ang KK, Hallenbeck KK, Syme C, Hakozaki H, Ellisman MH, Swanson RA, Zamvil SS, Arkin MR, Zorn SH, Pico AR, Mucke L, Freedman SB, Stavenhagen JB, Nelson RB, Akassoglou K (2018) Fibrin-targeting immunotherapy protects against neuroinflammation and neurodegeneration. Nat Immunol 19:1212–1223. https://doi.org/10.1038/s41590-018-0232-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Valentijn KM, Sadler JE, Valentijn JA, Voorberg J, Eikenboom J (2011) Functional architecture of Weibel-Palade bodies. Blood. 117:5033–5043. https://doi.org/10.1182/blood-2010-09-267492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Poggesi A, Pasi M, Pescini F, Pantoni L, Inzitari D (2016) Circulating biologic markers of endothelial dysfunction in cerebral small vessel disease: a review. J Cereb Blood Flow Metab : official journal of the International Society of Cerebral Blood Flow and Metabolism 36:72–94. https://doi.org/10.1038/jcbfm.2015.116

    Article  CAS  Google Scholar 

  10. Lancellotti S, Sacco M, Basso M, De Cristofaro R (2019) Mechanochemistry of von Willebrand factor. Biomol Concepts 10:194–208. https://doi.org/10.1515/bmc-2019-0022

    Article  CAS  PubMed  Google Scholar 

  11. Lancellotti S, Basso M, De Cristofaro R (2013) Proteolytic processing of von Willebrand factor by adamts13 and leukocyte proteases. Mediterranean journal of hematology and. Infect Dis Ther 5:e2013058. https://doi.org/10.4084/MJHID.2013.058

    Article  Google Scholar 

  12. Feng Y, Li X, Xiao J, Li W, Liu J, Zeng X, Chen X, Chen S (2016) ADAMTS13: more than a regulator of thrombosis. Int J Hematol 104:534–539. https://doi.org/10.1007/s12185-016-2091-2

    Article  CAS  PubMed  Google Scholar 

  13. Cao Y, Xu H, Zhu Y, Shi MJ, Wei L, Zhang J, Cheng S, Shi Y, Tong H, Kang L, Lu L, Luo H, Yang X, Bai X, Wang R, Ma Y, Wang Y, Wang Z, Zhong K, Zhao BQ, Fan W (2019) ADAMTS13 maintains cerebrovascular integrity to ameliorate Alzheimer-like pathology. PLoS Biol 17:e3000313. https://doi.org/10.1371/journal.pbio.3000313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wolters FJ, Boender J, de Vries PS, Sonneveld MA, Koudstaal PJ, de Maat MP, Franco OH, Ikram MK, Leebeek FW, Ikram MA (2018) Von Willebrand factor and ADAMTS13 activity in relation to risk of dementia: a population-based study. Sci Rep 8:5474. https://doi.org/10.1038/s41598-018-23865-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hagnelius NO, Boman K, Nilsson TK (2010) Fibrinolysis and von Willebrand factor in Alzheimer’s disease and vascular dementia—a case-referent study. Thromb Res 126:35–38. https://doi.org/10.1016/j.thromres.2009.10.001

    Article  CAS  PubMed  Google Scholar 

  16. Mari D, Parnetti L, Coppola R, Bottasso B, Reboldi GP, Senin U, Mannucci PM (1996) Hemostasis abnormalities in patients with vascular dementia and Alzheimer’s disease. Thromb Haemost 75:216–218

    Article  CAS  Google Scholar 

  17. Borroni B, Volpi R, Martini G, del Bono R, Archetti S, Colciaghi F, Akkawi NM, di Luca M, Romanelli G, Caimi L, Padovani A (2002) Peripheral blood abnormalities in Alzheimer disease: evidence for early endothelial dysfunction. Alzheimer Dis Assoc Disord 16:150–155

    Article  CAS  Google Scholar 

  18. Yavuz BB, Dede DS, Yavuz B, Cankurtaran M, Halil M, Ulger Z, Cankurtaran ES, Aytemir K, Kabakci G, Haznedaroglu IC, Ariogul S (2010) Potential biomarkers for vascular damage in Alzheimer’s disease: thrombomodulin and von Willebrand factor. J Nutr Health Aging 14:439–441. https://doi.org/10.1007/s12603-010-0043-8

    Article  CAS  PubMed  Google Scholar 

  19. Schoneich C (2005) Methionine oxidation by reactive oxygen species: reaction mechanisms and relevance to Alzheimer’s disease. Biochim Biophys Acta 1703:111–119. https://doi.org/10.1016/j.bbapap.2004.09.009

    Article  CAS  PubMed  Google Scholar 

  20. Beretta S, Pastori C, Sala G, Piazza F, Ferrarese C, Cattalini A, de Curtis M, Librizzi L (2011) Acute lipophilicity-dependent effect of intravascular simvastatin in the early phase of focal cerebral ischemia. Neuropharmacology. 60:878–885. https://doi.org/10.1016/j.neuropharm.2011.01.003

    Article  CAS  PubMed  Google Scholar 

  21. Lenting PJ (2011) SHEARiO, fast lane to oxidized VWF. Blood. 118:5068–5069. https://doi.org/10.1182/blood-2011-09-381145

    Article  CAS  PubMed  Google Scholar 

  22. Wohner N, Kovacs A, Machovich R, Kolev K (2012) Modulation of the von Willebrand factor-dependent platelet adhesion through alternative proteolytic pathways. Thromb Res 129:e41–e46. https://doi.org/10.1016/j.thromres.2011.11.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chauhan AK (2014) Degradation of platelet-von Willebrand factor complexes by plasmin: an alternative/backup mechanism to ADAMTS13. Circulation. 129:1273–1275. https://doi.org/10.1161/CIRCULATIONAHA.114.008298

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lancellotti S, De Filippis V, Pozzi N et al (2011) Oxidized von Willebrand factor is efficiently cleaved by serine proteases from primary granules of leukocytes: divergence from ADAMTS-13. J Thromb Haemost : JTH 9:1620–1627. https://doi.org/10.1111/j.1538-7836.2011.04367.x

    Article  CAS  PubMed  Google Scholar 

  25. Randi AM, Smith KE, Castaman G (2018) von Willebrand factor regulation of blood vessel formation. Blood. 132:132–140. https://doi.org/10.1182/blood-2018-01-769018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Donnini S, Solito R, Cetti E, Corti F, Giachetti A, Carra S, Beltrame M, Cotelli F, Ziche M (2010) Abeta peptides accelerate the senescence of endothelial cells in vitro and in vivo, impairing angiogenesis. FASEB J: official publication of the Federation of American Societies for Experimental Biology 24:2385–2395. https://doi.org/10.1096/fj.09-146456

    Article  CAS  Google Scholar 

  27. Koster KP, Thomas R, Morris AWJ, Tsai LM (2016) Epidermal growth factor prevents oligomeric amyloid-beta induced angiogenesis deficits in vitro. J Cereb Blood Flow Metab: official journal of the International Society of Cerebral Blood Flow and Metabolism 36:1865–1871. https://doi.org/10.1177/0271678X16669956

    Article  CAS  Google Scholar 

  28. Sweeney MD, Sagare AP, Zlokovic BV (2018) Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 14:133–150. https://doi.org/10.1038/nrneurol.2017.188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ryu JK, McLarnon JG (2009) A leaky blood-brain barrier, fibrinogen infiltration and microglial reactivity in inflamed Alzheimer’s disease brain. J Cell Mol Med 13:2911–2925. https://doi.org/10.1111/j.1582-4934.2008.00434.x

    Article  CAS  PubMed  Google Scholar 

  30. Cullen KM, Kocsi Z, Stone J (2006) Microvascular pathology in the aging human brain: evidence that senile plaques are sites of microhaemorrhages. Neurobiol Aging 27:1786–1796

    Article  CAS  Google Scholar 

  31. Thomas T, Miners S, Love S (2015) Post-mortem assessment of hypoperfusion of cerebral cortex in Alzheimer’s disease and vascular dementia. Brain J Neurol 138:1059–1069. https://doi.org/10.1093/brain/awv025

    Article  Google Scholar 

  32. Miners JS, Schulz I, Love S (2018) Differing associations between Abeta accumulation, hypoperfusion, blood-brain barrier dysfunction and loss of PDGFRB pericyte marker in the precuneus and parietal white matter in Alzheimer’s disease. J Cereb Blood Flow Metab: official journal of the International Society of Cerebral Blood Flow and Metabolism 38:103–115. https://doi.org/10.1177/0271678X17690761

    Article  CAS  Google Scholar 

  33. Kim KS, Park JY, Jou I, Park SM (2010) Regulation of Weibel-Palade body exocytosis by alpha-synuclein in endothelial cells. J Biol Chem 285:21416–21425. https://doi.org/10.1074/jbc.M110.103499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Atsmon-Raz Y, Miller Y (2016) Non-amyloid-beta component of human alpha-synuclein oligomers induces formation of new abeta oligomers: insight into the mechanisms that link Parkinson's and Alzheimer’s diseases. ACS Chem Neurosci 7:46–55. https://doi.org/10.1021/acschemneuro.5b00204

    Article  CAS  PubMed  Google Scholar 

  35. Takeda A, Hashimoto M, Mallory M, Sundsumo M, Hansen L, Masliah E (2000) C-terminal alpha-synuclein immunoreactivity in structures other than Lewy bodies in neurodegenerative disorders. Acta Neuropathol 99:296–304. https://doi.org/10.1007/pl00007441

    Article  CAS  PubMed  Google Scholar 

  36. Hoffman M (2018) The tissue factor pathway and wound healing. Semin Thromb Hemost 44:142–150. https://doi.org/10.1055/s-0037-1606181

    Article  CAS  PubMed  Google Scholar 

  37. del Zoppo GJ, Yu JQ, Copeland BR, Thomas WS, Schneiderman J, Morrissey JH (1992) Tissue factor localization in non-human primate cerebral tissue. Thromb Haemost 68:642–647

    Article  Google Scholar 

  38. Eddleston M, de la Torre JC, Oldstone MB, Loskutoff DJ, Edgington TS, Mackman N (1993) Astrocytes are the primary source of tissue factor in the murine central nervous system. A role for astrocytes in cerebral hemostasis. J Clin Invest 92:349–358. https://doi.org/10.1172/JCI116573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Drake TA, Morrissey JH, Edgington TS (1989) Selective cellular expression of tissue factor in human tissues. Implications for disorders of hemostasis and thrombosis. Am J Pathol 134:1087–1097

    CAS  PubMed  PubMed Central  Google Scholar 

  40. McComb RD, Miller KA, Carson SD (1991) Tissue factor antigen in senile plaques of Alzheimer’s disease. Am J Pathol 139:491–494

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zelaya H, Rothmeier AS, Ruf W (2018) Tissue factor at the crossroad of coagulation and cell signaling. J Thromb Haemost : JTH 16:1941–1952. https://doi.org/10.1111/jth.14246

    Article  CAS  PubMed  Google Scholar 

  42. Magalhaes CA, Campos FM, Loures CMG et al (2019) Blood neuron cell-derived microparticles as potential biomarkers in Alzheimer’s disease. Clin Chem Lab Med 57:e77–e80. https://doi.org/10.1515/cclm-2018-0483

    Article  CAS  PubMed  Google Scholar 

  43. Magalhaes CA, Campos FM, Loures CMG et al (2019) Microparticles are related to cognitive and functional status from normal aging to dementia. J Neuroimmunol 336:577027. https://doi.org/10.1016/j.jneuroim.2019.577027

    Article  CAS  Google Scholar 

  44. Leung YY, Toledo JB, Nefedov A, Polikar R, Raghavan N, Xie SX, Farnum M, Schultz T, Baek Y, van Deerlin VM, Hu WT, Holtzman DM, Fagan AM, Perrin RJ, Grossman M, Soares HD, Kling MA, Mailman M, Arnold SE, Narayan VA, Lee VMY, Shaw LM, Baker D, Wittenberg GM, Trojanowski JQ, Wang LS, Alzheimer's Disease Neuroimaging Initiative (2015) Identifying amyloid pathology-related cerebrospinal fluid biomarkers for Alzheimer’s disease in a multicohort study. Alzheimers Dement 1:339–348. https://doi.org/10.1016/j.dadm.2015.06.008

    Article  Google Scholar 

  45. Maroney SA, Mast AE (2015) New insights into the biology of tissue factor pathway inhibitor. J Thromb Haemost : JTH 13(Suppl 1):S200–S207. https://doi.org/10.1111/jth.12897

    Article  CAS  PubMed  Google Scholar 

  46. Bajaj MS, Kuppuswamy MN, Manepalli AN, Bajaj SP (1999) Transcriptional expression of tissue factor pathway inhibitor, thrombomodulin and von Willebrand factor in normal human tissues. Thromb Haemost 82:1047–1052

    Article  CAS  Google Scholar 

  47. Hollister RD, Kisiel W, Hyman BT (1996) Immunohistochemical localization of tissue factor pathway inhibitor-1 (TFPI-1), a Kunitz proteinase inhibitor, in Alzheimer’s disease. Brain Res 728:13–19

    Article  CAS  Google Scholar 

  48. Maroney SA, Westrick R, Cleuren A et al (2020) Tissue factor pathway inhibitor is required for cerebrovascular development in mice. Blood. 137:258–268. https://doi.org/10.1182/blood.2020006054

    Article  CAS  Google Scholar 

  49. Piazza F, Galimberti G, Conti E, Isella V, Perlangeli MV, Speranza T, Borroni B, Pogliani EM, Padovani A, Ferrarese C (2012) Increased tissue factor pathway inhibitor and homocysteine in Alzheimer’s disease. Neurobiol Aging 33:226–233. https://doi.org/10.1016/j.neurobiolaging.2010.02.016

    Article  CAS  PubMed  Google Scholar 

  50. Kim G, Kim H, Kim KN, Son JI, Kim SY, Tamura T, Chang N (2013) Relationship of cognitive function with B vitamin status, homocysteine, and tissue factor pathway inhibitor in cognitively impaired elderly: a cross-sectional survey. J Alzheimer's Disease : JAD 33:853–862. https://doi.org/10.3233/JAD-2012-121345

    Article  CAS  Google Scholar 

  51. Tawfik A, Samra YA, Elsherbiny NM, Al-Shabrawey M (2020) Implication of hyperhomocysteinemia in blood retinal barrier (BRB) dysfunction. Biomolecules. 10. https://doi.org/10.3390/biom10081119

  52. Chung YC, Kruyer A, Yao Y, Feierman E, Richards A, Strickland S, Norris EH (2016) Hyperhomocysteinemia exacerbates Alzheimer’s disease pathology by way of the beta-amyloid fibrinogen interaction. J Thromb Haemost: JTH 14:1442–1452. https://doi.org/10.1111/jth.13340

    Article  CAS  PubMed  Google Scholar 

  53. Cheng T, Petraglia AL, Li Z, Thiyagarajan M, Zhong Z, Wu Z, Liu D, Maggirwar SB, Deane R, Fernández JA, LaRue B, Griffin JH, Chopp M, Zlokovic BV (2006) Activated protein C inhibits tissue plasminogen activator-induced brain hemorrhage. Nat Med 12:1278–1285. https://doi.org/10.1038/nm1498

    Article  CAS  PubMed  Google Scholar 

  54. Feistritzer C, Riewald M (2005) Endothelial barrier protection by activated protein C through PAR1-dependent sphingosine 1-phosphate receptor-1 crossactivation. Blood. 105:3178–3184. https://doi.org/10.1182/blood-2004-10-3985

    Article  CAS  PubMed  Google Scholar 

  55. Kant R, Halder SK, Fernandez JA, Griffin JH, Milner R (2020) Activated protein C attenuates experimental autoimmune encephalomyelitis progression by enhancing vascular integrity and suppressing microglial activation. Front Neurosci 14:333. https://doi.org/10.3389/fnins.2020.00333

    Article  PubMed  PubMed Central  Google Scholar 

  56. Petraglia AL, Marky AH, Walker C, Thiyagarajan M, Zlokovic BV (2010) Activated protein C is neuroprotective and mediates new blood vessel formation and neurogenesis after controlled cortical impact. Neurosurgery. 66:165–171; discussion 171-162. https://doi.org/10.1227/01.NEU.0000363148.49779.68

    Article  PubMed  Google Scholar 

  57. Yamamoto K, Loskutoff DJ (1998) Extrahepatic expression and regulation of protein C in the mouse. Am J Pathol 153:547–555. https://doi.org/10.1016/S0002-9440(10)65597-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Deane R, LaRue B, Sagare AP, Castellino FJ, Zhong Z, Zlokovic BV (2009) Endothelial protein C receptor-assisted transport of activated protein C across the mouse blood-brain barrier. J Cereb Blood Flow Metab: official journal of the International Society of Cerebral Blood Flow and Metabolism 29:25–33. https://doi.org/10.1038/jcbfm.2008.117

    Article  CAS  Google Scholar 

  59. Griffin JH, Zlokovic BV, Mosnier LO (2018) Activated protein C, protease activated receptor 1, and neuroprotection. Blood. 132:159–169. https://doi.org/10.1182/blood-2018-02-769026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang X, Huang L, Lu G, Ge L, Hong Y, Hu Z (2014) Amyloid beta suppresses protein C activation through inhibition of the endothelial protein C receptor (EPCR). J Mol Neurosci : MN 52:117–123. https://doi.org/10.1007/s12031-013-0123-4

    Article  CAS  PubMed  Google Scholar 

  61. Zhu Y, Chen Z, Chen X, Hu S (2015) Serum sEPCR levels are elevated in patients with Alzheimer’s disease. Am J Alzheimers Dis Other Dement 30:517–521. https://doi.org/10.1177/1533317514567124

    Article  Google Scholar 

  62. Xu J, Qu D, Esmon NL, Esmon CT (2000) Metalloproteolytic release of endothelial cell protein C receptor. J Biol Chem 275:6038–6044. https://doi.org/10.1074/jbc.275.8.6038

    Article  CAS  PubMed  Google Scholar 

  63. Genc K (2007) Activated protein C: therapeutic implications for Alzheimer’s disease. Med Hypotheses 69:701–702. https://doi.org/10.1016/j.mehy.2007.01.016

    Article  CAS  PubMed  Google Scholar 

  64. Li B, Yu D, Xu Z (2014) Activated protein C inhibits amyloid beta production via promoting expression of ADAM-10. Brain Res 1545:35–44. https://doi.org/10.1016/j.brainres.2013.12.005

    Article  CAS  PubMed  Google Scholar 

  65. Lazic D, Sagare AP, Nikolakopoulou AM, Griffin JH, Vassar R, Zlokovic BV (2019) 3K3A-activated protein C blocks amyloidogenic BACE1 pathway and improves functional outcome in mice. J Exp Med 216:279–293. https://doi.org/10.1084/jem.20181035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schwartz ML, Pizzo SV, Hill RL, McKee PA (1973) Human Factor XIII from plasma and platelets. Molecular weights, subunit structures, proteolytic activation, and cross-linking of fibrinogen and fibrin. J Biol Chem 248:1395–1407

    Article  CAS  Google Scholar 

  67. Hornyak TJ, Shafer JA (1991) Role of calcium ion in the generation of factor XIII activity. Biochemistry. 30:6175–6182. https://doi.org/10.1021/bi00239a014

    Article  CAS  PubMed  Google Scholar 

  68. Smith KA, Pease RJ, Avery CA, Brown JM, Adamson PJ, Cooke EJ, Neergaard-Petersen S, Cordell PA, Ariëns RAS, Fishwick CWG, Philippou H, Grant PJ (2013) The activation peptide cleft exposed by thrombin cleavage of FXIII-A(2) contains a recognition site for the fibrinogen alpha chain. Blood. 121:2117–2126. https://doi.org/10.1182/blood-2012-07-446393

    Article  CAS  PubMed  Google Scholar 

  69. Dorgalaleh A, Rashidpanah J (2016) Blood coagulation factor XIII and factor XIII deficiency. Blood Rev 30:461–475. https://doi.org/10.1016/j.blre.2016.06.002

    Article  CAS  PubMed  Google Scholar 

  70. Hur WS, Mazinani N, Lu XJD, Yefet LS, Byrnes JR, Ho L, Yeon JH, Filipenko S, Wolberg AS, Jefferies WA, Kastrup CJ (2019) Coagulation factor XIIIa cross-links amyloid beta into dimers and oligomers and to blood proteins. J Biol Chem 294:390–396. https://doi.org/10.1074/jbc.RA118.005352

    Article  CAS  PubMed  Google Scholar 

  71. de Jager M, Boot MV, Bol JG et al (2016) The blood clotting Factor XIIIa forms unique complexes with amyloid-beta (Abeta) and colocalizes with deposited Abeta in cerebral amyloid angiopathy. Neuropathol Appl Neurobiol 42:255–272. https://doi.org/10.1111/nan.12244

    Article  CAS  PubMed  Google Scholar 

  72. Kang S, Jeong H, Baek JH, Lee SJ, Han SH, Cho HJ, Kim H, Hong HS, Kim YH, Yi EC, Seo SW, Na DL, Hwang D, Mook-Jung I (2016) PiB-PET imaging-based serum proteome profiles predict mild cognitive impairment and Alzheimer’s disease. J Alzheimer's Dis: JAD 53:1563–1576. https://doi.org/10.3233/JAD-160025

    Article  CAS  Google Scholar 

  73. Zamolodchikov D, Strickland S (2012) Abeta delays fibrin clot lysis by altering fibrin structure and attenuating plasminogen binding to fibrin. Blood. 119:3342–3351. https://doi.org/10.1182/blood-2011-11-389668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kangsadalampai S, Board PG (1998) The Val34Leu polymorphism in the A subunit of coagulation factor XIII contributes to the large normal range in activity and demonstrates that the activation peptide plays a role in catalytic activity. Blood. 92:2766–2770

    Article  CAS  Google Scholar 

  75. Ariens RA, Philippou H, Nagaswami C, Weisel JW, Lane DA, Grant PJ (2000) The factor XIII V34L polymorphism accelerates thrombin activation of factor XIII and affects cross-linked fibrin structure. Blood. 96:988–995

    Article  CAS  Google Scholar 

  76. Gerardino L, Papaleo P, Flex A, Gaetani E, Fioroni G, Pola P, Pola R (2006) Coagulation factor XIII Val34Leu gene polymorphism and Alzheimer’s disease. Neurol Res 28:807–809. https://doi.org/10.1179/016164106X110454

    Article  CAS  PubMed  Google Scholar 

  77. Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R, Lindley RI, O'Brien JT, Barkhof F, Benavente OR, Black SE, Brayne C, Breteler M, Chabriat H, Decarli C, de Leeuw FE, Doubal F, Duering M, Fox NC, Greenberg S, Hachinski V, Kilimann I, Mok V, Oostenbrugge Rv, Pantoni L, Speck O, Stephan BC, Teipel S, Viswanathan A, Werring D, Chen C, Smith C, van Buchem M, Norrving B, Gorelick PB, Dichgans M, STandards for ReportIng Vascular changes on nEuroimaging (STRIVE v1) (2013) Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 12:822–838. https://doi.org/10.1016/S1474-4422(13)70124-8

    Article  PubMed  PubMed Central  Google Scholar 

  78. Gemmati D, Serino ML, Ongaro A, Tognazzo S, Moratelli S, Resca R, Moretti M, Scapoli GL (2001) A common mutation in the gene for coagulation factor XIII-A (VAL34Leu): a risk factor for primary intracerebral hemorrhage is protective against atherothrombotic diseases. Am J Hematol 67:183–188. https://doi.org/10.1002/ajh.1104

    Article  CAS  PubMed  Google Scholar 

  79. Antalfi B, Pongracz E, Csiki Z, Mezei ZA, Shemirani AH (2013) Factor XIII-A subunit Val34Leu polymorphism in fatal hemorrhagic stroke. Int J Lab Hematol 35:88–91. https://doi.org/10.1111/j.1751-553X.2012.01465.x

    Article  CAS  PubMed  Google Scholar 

  80. Arishima H, Neishi H, Kikuta KI, Morita M, Hosono N, Yamauchi T, Souri M, Ichinose A (2017) Lobar hemorrhage induced by acquired factor XIII deficiency in a patient with cerebral amyloid angiopathy. J Stroke Cerebrovasc Diseases : the official journal of National Stroke Association 26:e203–e205. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.07.009

    Article  Google Scholar 

  81. Muszbek L, Penzes K, Katona E (2018) Auto- and alloantibodies against factor XIII: laboratory diagnosis and clinical consequences. J Thromb Haemost: JTH 16:822–832. https://doi.org/10.1111/jth.13982

    Article  CAS  PubMed  Google Scholar 

  82. Adany R, Bardos H (2003) Factor XIII subunit A as an intracellular transglutaminase. Cell Mol Life Sci: CMLS 60:1049–1060. https://doi.org/10.1007/s00018-003-2178-9

    Article  CAS  PubMed  Google Scholar 

  83. Jayo A, Conde I, Lastres P, Jimenez-Yuste V, Gonzalez-Manchon C (2009) Possible role for cellular FXIII in monocyte-derived dendritic cell motility. Eur J Cell Biol 88:423–431. https://doi.org/10.1016/j.ejcb.2009.04.002

    Article  CAS  PubMed  Google Scholar 

  84. Sarvary A, Szucs S, Balogh I et al (2004) Possible role of factor XIII subunit A in Fcgamma and complement receptor-mediated phagocytosis. Cell Immunol 228:81–90. https://doi.org/10.1016/j.cellimm.2004.04.007

    Article  CAS  PubMed  Google Scholar 

  85. Torocsik D, Szeles L, Paragh G Jr et al (2010) Factor XIII-A is involved in the regulation of gene expression in alternatively activated human macrophages. Thromb Haemost 104:709–717. https://doi.org/10.1160/TH09-11-0805

    Article  CAS  PubMed  Google Scholar 

  86. Torocsik D, Bardos H, Nagy L, Adany R (2005) Identification of factor XIII-A as a marker of alternative macrophage activation. Cell Mol Life Sci: CMLS 62:2132–2139. https://doi.org/10.1007/s00018-005-5242-9

    Article  CAS  PubMed  Google Scholar 

  87. Akiyama H, Kondo H, Ikeda K, Arai T, Kato M, McGleer PL (1995) Immunohistochemical detection of coagulation factor XIIIa in postmortem human brain tissue. Neurosci Lett 202:29–32. https://doi.org/10.1016/0304-3940(95)12188-9

    Article  CAS  PubMed  Google Scholar 

  88. Hur WS, Juang LJ, Mazinani N, Munro L, Jefferies WA, Kastrup CJ (2020) Post-translational modifications of platelet-derived amyloid precursor protein by coagulation factor XIII-A. Biochemistry. 59:4449–4455. https://doi.org/10.1021/acs.biochem.0c00450

    Article  CAS  PubMed  Google Scholar 

  89. Cortes-Canteli M, Paul J, Norris EH, Bronstein R, Ahn HJ, Zamolodchikov D, Bhuvanendran S, Fenz KM, Strickland S (2010) Fibrinogen and beta-amyloid association alters thrombosis and fibrinolysis: a possible contributing factor to Alzheimer's disease. Neuron. 66:695–709. https://doi.org/10.1016/j.neuron.2010.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Longstaff C, Kolev K (2015) Basic mechanisms and regulation of fibrinolysis. J Thromb Haemost : JTH 13(Suppl 1):S98–S105. https://doi.org/10.1111/jth.12935

  91. Kingston IB, Castro MJ, Anderson S (1995) In vitro stimulation of tissue-type plasminogen activator by Alzheimer amyloid beta-peptide analogues. Nat Med 1:138–142. https://doi.org/10.1038/nm0295-138

    Article  CAS  PubMed  Google Scholar 

  92. Ledesma MD, Da Silva JS, Crassaerts K, Delacourte A, De Strooper B, Dotti CG (2000) Brain plasmin enhances APP alpha-cleavage and Abeta degradation and is reduced in Alzheimer’s disease brains. EMBO Rep 1:530–535. https://doi.org/10.1093/embo-reports/kvd107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cajamarca SA, Norris EH, van der Weerd L, Strickland S, Ahn HJ (2020) Cerebral amyloid angiopathy-linked beta-amyloid mutations promote cerebral fibrin deposits via increased binding affinity for fibrinogen. Proc Natl Acad Sci U S A 117:14482–14492. https://doi.org/10.1073/pnas.1921327117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Barker R, Love S, Kehoe PG (2010) Plasminogen and plasmin in Alzheimer’s disease. Brain Res 1355:7–15. https://doi.org/10.1016/j.brainres.2010.08.025

    Article  CAS  PubMed  Google Scholar 

  95. Martorana A, Sancesario GM, Esposito Z, Nuccetelli M, Sorge R, Formosa A, Dinallo V, Bernardi G, Bernardini S, Sancesario G (2012) Plasmin system of Alzheimer’s disease patients: CSF analysis. J Neural Transm 119:763–769. https://doi.org/10.1007/s00702-012-0778-y

    Article  CAS  PubMed  Google Scholar 

  96. Craig-Schapiro R, Kuhn M, Xiong C, Pickering EH, Liu J, Misko TP, Perrin RJ, Bales KR, Soares H, Fagan AM, Holtzman DM (2011) Multiplexed immunoassay panel identifies novel CSF biomarkers for Alzheimer’s disease diagnosis and prognosis. PLoS One 6:e18850. https://doi.org/10.1371/journal.pone.0018850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Grand Moursel L, van Roon-Mom WMC, Kielbasa SM et al (2018) Brain transcriptomic analysis of hereditary cerebral hemorrhage with amyloidosis-Dutch type. Front Aging Neurosci 10:102. https://doi.org/10.3389/fnagi.2018.00102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Akhter H, Huang WT, van Groen T, Kuo HC, Miyata T, Liu RM (2018) A small molecule inhibitor of plasminogen activator inhibitor-1 reduces brain amyloid-beta load and improves memory in an animal model of Alzheimer’s disease. J Alzheimer's Disease : JAD 64:447–457. https://doi.org/10.3233/JAD-180241

    Article  CAS  Google Scholar 

  99. Liu RM, van Groen T, Katre A, Cao D, Kadisha I, Ballinger C, Wang L, Carroll SL, Li L (2011) Knockout of plasminogen activator inhibitor 1 gene reduces amyloid beta peptide burden in a mouse model of Alzheimer’s disease. Neurobiol Aging 32:1079–1089. https://doi.org/10.1016/j.neurobiolaging.2009.06.003

    Article  CAS  PubMed  Google Scholar 

  100. Gerenu G, Martisova E, Ferrero H, Carracedo M, Rantamäki T, Ramirez MJ, Gil-Bea FJ (2017) Modulation of BDNF cleavage by plasminogen-activator inhibitor-1 contributes to Alzheimer’s neuropathology and cognitive deficits. Biochim Biophys Acta Mol basis Dis 1863:991–1001. https://doi.org/10.1016/j.bbadis.2017.01.023

    Article  CAS  PubMed  Google Scholar 

  101. Jeon H, Kim JH, Kim JH, Lee WH, Lee MS, Suk K (2012) Plasminogen activator inhibitor type 1 regulates microglial motility and phagocytic activity. J Neuroinflammation 9:149. https://doi.org/10.1186/1742-2094-9-149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Finckh U, van Hadeln K, Muller-Thomsen T et al (2003) Association of late-onset Alzheimer disease with a genotype of PLAU, the gene encoding urokinase-type plasminogen activator on chromosome 10q22.2. Neurogenetics. 4:213–217. https://doi.org/10.1007/s10048-003-0157-9

    Article  CAS  PubMed  Google Scholar 

  103. Shibata N, Kawarai T, Meng Y, Lee JH, Lee HS, Wakutani Y, Shibata E, Pathan N, Bi A, Sato C, Sorbi S, Bruni AC, Duara R, Mayeux R, Farrer LA, George-Hyslop PS, Rogaeva E (2007) Association studies between the plasmin genes and late-onset Alzheimer’s disease. Neurobiol Aging 28:1041–1043. https://doi.org/10.1016/j.neurobiolaging.2006.05.028

    Article  CAS  PubMed  Google Scholar 

  104. Fekih-Mrissa N, Mansour M, Sayeh A, Bedoui I, Mrad M, Riahi A, Mrissa R, Nsiri B (2017) The plasminogen activator inhibitor 1 4G/5G polymorphism and the risk of Alzheimer’s disease. Am J Alzheimers Dis Other Dement 32:342–346. https://doi.org/10.1177/1533317517705223

    Article  Google Scholar 

  105. Van Nostrand WE, Schmaier AH, Siegel RS, Wagner SL, Raschke WC (1995) Enhanced plasmin inhibition by a reactive center lysine mutant of the Kunitz-type protease inhibitor domain of the amyloid beta-protein precursor. J Biol Chem 270:22827–22830. https://doi.org/10.1074/jbc.270.39.22827

    Article  PubMed  Google Scholar 

  106. Marksteiner J, Imarhiagbe D, Defrancesco M, Deisenhammer EA, Kemmler G, Humpel C (2014) Analysis of 27 vascular-related proteins reveals that NT-proBNP is a potential biomarker for Alzheimer’s disease and mild cognitive impairment: a pilot-study. Exp Gerontol 50:114–121. https://doi.org/10.1016/j.exger.2013.12.001

    Article  CAS  PubMed  Google Scholar 

  107. Oh J, Lee HJ, Song JH, Park SI, Kim H (2014) Plasminogen activator inhibitor-1 as an early potential diagnostic marker for Alzheimer’s disease. Exp Gerontol 60:87–91. https://doi.org/10.1016/j.exger.2014.10.004

    Article  CAS  PubMed  Google Scholar 

  108. Whelan CD, Mattsson N, Nagle MW, Vijayaraghavan S, Hyde C, Janelidze S, Stomrud E, Lee J, Fitz L, Samad TA, Ramaswamy G, Margolin RA, Malarstig A, Hansson O (2019) Multiplex proteomics identifies novel CSF and plasma biomarkers of early Alzheimer’s disease. Acta Neuropathol Commun 7:169. https://doi.org/10.1186/s40478-019-0795-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Loures CMG, Duarte RCF, Silva MVF et al (2019) Hemostatic abnormalities in dementia: a systematic review and meta-analysis. Semin Thromb Hemost 45:514–522. https://doi.org/10.1055/s-0039-1688444

    Article  CAS  PubMed  Google Scholar 

  110. Haan J, Kluft C, Leebeek FW, de Bart AC, Buruma OJ, Roos RA (1992) Hereditary cerebral hemorrhage with amyloidosis-Dutch type: a study of fibrinolysis. Thromb Haemost 67:16–18

    Article  CAS  Google Scholar 

  111. Milojevic J, Costa M, Ortiz AM, Jorquera JI, Melacini G (2014) In vitro amyloid-beta binding and inhibition of amyloid-beta self-association by therapeutic albumin. J Alzheimer's Disease : JAD 38:753–765. https://doi.org/10.3233/JAD-131169

    Article  CAS  Google Scholar 

  112. Biere AL, Ostaszewski B, Stimson ER, Hyman BT, Maggio JE, Selkoe DJ (1996) Amyloid beta-peptide is transported on lipoproteins and albumin in human plasma. J Biol Chem 271:32916–32922. https://doi.org/10.1074/jbc.271.51.32916

    Article  CAS  PubMed  Google Scholar 

  113. Davis J, Wagner MR, Zhang W, Xu F, Van Nostrand WE (2003) Amyloid beta-protein stimulates the expression of urokinase-type plasminogen activator (uPA) and its receptor (uPAR) in human cerebrovascular smooth muscle cells. J Biol Chem 278:19054–19061. https://doi.org/10.1074/jbc.M301398200

    Article  CAS  PubMed  Google Scholar 

  114. Cunningham O, Campion S, Perry VH, Murray C, Sidenius N, Docagne F, Cunningham C (2009) Microglia and the urokinase plasminogen activator receptor/uPA system in innate brain inflammation. Glia. 57:1802–1814. https://doi.org/10.1002/glia.20892

    Article  PubMed  PubMed Central  Google Scholar 

  115. Merino P, Diaz A, Jeanneret V, Wu F, Torre E, Cheng L, Yepes M (2017) Urokinase-type Plasminogen Activator (uPA) Binding to the uPA receptor (uPAR) promotes axonal regeneration in the central nervous system. J Biol Chem 292:2741–2753. https://doi.org/10.1074/jbc.M116.761650

    Article  CAS  PubMed  Google Scholar 

  116. Diaz A, Merino P, Guo JD, Yepes MA, McCann P, Katta T, Tong EM, Torre E, Rangaraju S, Yepes M (2020) Urokinase-type plasminogen activator protects cerebral cortical neurons from soluble abeta-induced synaptic damage. J Neurosci Off J Soc Neurosci 40:4251–4263. https://doi.org/10.1523/JNEUROSCI.2804-19.2020

    Article  CAS  Google Scholar 

  117. Arvanitakis Z, Leurgans SE, Wang Z, Wilson RS, Bennett DA, Schneider JA (2011) Cerebral amyloid angiopathy pathology and cognitive domains in older persons. Ann Neurol 69:320–327. https://doi.org/10.1002/ana.22112

    Article  PubMed  Google Scholar 

  118. Spina S, La Joie R, Petersen C et al (2021) Comorbid neuropathological diagnoses in early versus late-onset Alzheimer’s disease. Brain J Neurol. https://doi.org/10.1093/brain/awab099

  119. Piazza F, Winblad B (2016) Amyloid-related imaging abnormalities (ARIA) in immunotherapy trials for Alzheimer’s disease: need for prognostic biomarkers? J Alzheimer's Dis: JAD 52:417–420. https://doi.org/10.3233/JAD-160122

    Article  CAS  Google Scholar 

  120. DiFrancesco JC, Longoni M, Piazza F (2015) Anti-abeta autoantibodies in amyloid related imaging abnormalities (ARIA): candidate biomarker for immunotherapy in Alzheimer's disease and cerebral amyloid angiopathy. Front Neurol 6:207. https://doi.org/10.3389/fneur.2015.00207

    Article  PubMed  PubMed Central  Google Scholar 

  121. Carmona-Iragui M, Fernandez-Arcos A, Alcolea D et al (2016) Cerebrospinal fluid anti-amyloid-beta autoantibodies and amyloid PET in cerebral amyloid angiopathy-related inflammation. J Alzheimer's Disease : JAD 50:1–7. https://doi.org/10.3233/JAD-150614

    Article  CAS  Google Scholar 

  122. DiFrancesco JC, Touat M, Caulo M et al (2015) Recurrence of cerebral amyloid angiopathy-related inflammation: a report of two cases from the iCAbeta International Network. J Alzheimer's Disease : JAD 46:1071–1077. https://doi.org/10.3233/JAD-150070

    Article  Google Scholar 

  123. Ziliotto N, Bernardi F, Jakimovski D, Zivadinov R (2019) Coagulation pathways in neurological diseases: multiple sclerosis. Front Neurol 10:409. https://doi.org/10.3389/fneur.2019.00409

    Article  PubMed  PubMed Central  Google Scholar 

  124. Ziliotto N, Zivadinov R, Baroni M, Marchetti G, Jakimovski D, Bergsland N, Ramasamy DP, Weinstock-Guttman B, Straudi S, Manfredini F, Ramanathan M, Bernardi F (2020) Plasma levels of protein C pathway proteins and brain magnetic resonance imaging volumes in multiple sclerosis. Eur J Neurol 27:235–243. https://doi.org/10.1111/ene.14058

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Nicole Ziliotto contributed to the study concept and design, drafting the work, and critical revision of the manuscript for important intellectual content. Francesco Bernardi and Fabrizio Piazza contributed to the critical revision of the manuscript for important intellectual content. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Nicole Ziliotto.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

NZ has nothing to disclose.

FB reports grants from Bayer and Pfizer on coagulation issues but outside the submitted work.

FP reports grants from the Alzheimer’s Association (ModelCAA Research Grant - AARG-18-561699); Fondazione Cariplo (biomarkARIA Research Project - 2015-0820), and the Canadian Institute of Health Research, outside the submitted work. FP received personal and Institutional fees and served as Scientific Academic Consultant and Advisor for Hoffmann La-Roche and Biogen, outside the submitted work. FP is the inventor (without ownership) of a patent for a method and kit for the Aβ-autoantibody test, outside the submitted work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziliotto, N., Bernardi, F. & Piazza, F. Hemostasis components in cerebral amyloid angiopathy and Alzheimer’s disease. Neurol Sci 42, 3177–3188 (2021). https://doi.org/10.1007/s10072-021-05327-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-021-05327-7

Keywords

Navigation