Skip to main content

Advertisement

Log in

Radiologically isolated syndrome: from biological bases to practical management

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

Technological advances and greater availability of magnetic resonance imaging have prompted an increment on incidental and unexpected findings within the central nervous system. The concept of radiologically isolated syndrome characterizes a group of subjects with images suggestive of demyelinating disease in the absence of a clinical episode compatible with multiple sclerosis. Since the description of this entity, many questions have arisen; some have received responses but others remain unanswered.

Review summary

A panel of experts met with the objective of performing a critical review of the currently available evidence. Definition, prevalence, biological bases, published evidence, and implications on patient management were reviewed. Thirty to 50% of subjects with radiologically isolated syndrome will progress to multiple sclerosis in 5 years. Male sex, age < 37 years old, and spinal lesions increase the risk. These subjects should be evaluated by a multiple sclerosis specialist, carefully excluding alternative diagnosis. An initial evaluation should include a brain and complete spine magnetic resonance, visual evoked potentials, and identification of oligoclonal bands in cerebrospinal fluid. Disease-modifying therapies could be considered when oligoclonal bands or radiological progression is present.

Conclusion

At present time, radiologically isolated syndrome cannot be considered a part of the multiple sclerosis spectrum. However, a proportion of patients may evolve to multiple sclerosis, meaning it represents much more than just a radiological finding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Okuda DT, Mowry EM, Beheshtian A, Waubant E, Baranzini SE, Goodin DS, Hauser SL, Pelletier D (2009) Incidental MRI anomalies suggestive of multiple sclerosis: the radiologically isolated syndrome. Neurology 72(9):800–805. https://doi.org/10.1212/01.wnl.0000335764.14513.1a

    Article  CAS  PubMed  Google Scholar 

  2. Castaigne P, Lhermitte F, Escourolle R, Hauw JJ, Gray F, Lyon-Caen O (1981) Asymptomatic multiple sclerosis - 3 cases (author’s transl). Rev Neurol (Paris) 137(12):729–739

    CAS  Google Scholar 

  3. Engell T (1989) A clinical patho-anatomical study of clinically silent multiple sclerosis. Acta Neurol Scand 79(5):428–430

    Article  CAS  Google Scholar 

  4. Gilbert JJ, Sadler M (1983) Unsuspected multiple sclerosis. Arch Neurol 40(9):533–536

    Article  CAS  Google Scholar 

  5. Forslin Y, Granberg T, Jumah AA, Shams S, Aspelin P, Kristoffersen-Wiberg M, Martola J, Fredrikson S (2016) Incidence of radiologically isolated syndrome: a population-based study. AJNR Am J Neuroradiol 37(6):1017–1022. https://doi.org/10.3174/ajnr.A4660

    Article  CAS  PubMed  Google Scholar 

  6. Rojas JI, Patrucco L, MIguez J, Sinay V, Cassara FP, Caceres F, Liguori NF, Saladino ML, Deri N, Jaacks G, Marcilla MP, Arrigoni MI, Correale J, Fiol M, Ysrraelit MC, Carra A, Curbelo MC, Martinez A, Steinberg J, Bestoso S, Hryb JP, Di Pace JL, Perassolo MB, Contentti EC, Caride A, Lopez PA, Martinez C, Reich E, Cristiano E (2016) Disease onset in familial and sporadic multiple sclerosis in Argentina. Mult Scler Relat Disord 6:54–56. https://doi.org/10.1016/j.msard.2016.01.004

    Article  CAS  PubMed  Google Scholar 

  7. De Stefano N, Cocco E, Lai M, Battaglini M, Spissu A, Marchi P, Floris G, Mortilla M, Stromillo ML, Paolillo A, Federico A, Marrosu MG (2006) Imaging brain damage in first-degree relatives of sporadic and familial multiple sclerosis. Ann Neurol 59(4):634–639. https://doi.org/10.1002/ana.20767

    Article  PubMed  Google Scholar 

  8. Polman CH, Reingold SC, Edan G, Filippi M, Hartung HP, Kappos L, Lublin FD, Metz LM, McFarland HF, O’Connor PW, Sandberg-Wollheim M, Thompson AJ, Weinshenker BG, Wolinsky JS (2005) Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol 58(6):840–846. https://doi.org/10.1002/ana.20703

    Article  PubMed  Google Scholar 

  9. Tintore M, Rovira A, Martinez MJ, Rio J, Diaz-Villoslada P, Brieva L, Borras C, Grive E, Capellades J, Montalban X (2000) Isolated demyelinating syndromes: comparison of different MR imaging criteria to predict conversion to clinically definite multiple sclerosis. AJNR Am J Neuroradiol 21(4):702–706

    CAS  PubMed  Google Scholar 

  10. Barkhof F, Filippi M, Miller DH, Scheltens P, Campi A, Polman CH, Comi G, Ader HJ, Losseff N, Valk J (1997) Comparison of MRI criteria at first presentation to predict conversion to clinically definite multiple sclerosis. Brain 120(Pt 11):2059–2069

    Article  Google Scholar 

  11. Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, Lublin FD, Montalban X, O’Connor P, Sandberg-Wollheim M, Thompson AJ, Waubant E, Weinshenker B, Wolinsky JS (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69(2):292–302. https://doi.org/10.1002/ana.22366

    Article  PubMed  PubMed Central  Google Scholar 

  12. Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, Correale J, Fazekas F, Filippi M, Freedman MS, Fujihara K, Galetta SL, Hartung HP, Kappos L, Lublin FD, Marrie RA, Miller AE, Miller DH, Montalban X, Mowry EM, Sorensen PS, Tintore M, Traboulsee AL, Trojano M, Uitdehaag BMJ, Vukusic S, Waubant E, Weinshenker BG, Reingold SC, Cohen JA (2018) Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 17(2):162–173. https://doi.org/10.1016/S1474-4422(17)30470-2

    Article  PubMed  Google Scholar 

  13. Bashir A, Lipton RB, Ashina S, Ashina M (2013) Migraine and structural changes in the brain: a systematic review and meta-analysis. Neurology 81(14):1260–1268. https://doi.org/10.1212/WNL.0b013e3182a6cb32

    Article  PubMed  PubMed Central  Google Scholar 

  14. Solomon AJ, Bourdette DN, Cross AH, Applebee A, Skidd PM, Howard DB, Spain RI, Cameron MH, Kim E, Mass MK, Yadav V, Whitham RH, Longbrake EE, Naismith RT, Wu GF, Parks BJ, Wingerchuk DM, Rabin BL, Toledano M, Tobin WO, Kantarci OH, Carter JL, Keegan BM, Weinshenker BG (2016) The contemporary spectrum of multiple sclerosis misdiagnosis: a multicenter study. Neurology 87(13):1393–1399. https://doi.org/10.1212/WNL.0000000000003152

    Article  PubMed  PubMed Central  Google Scholar 

  15. Liu S, Kullnat J, Bourdette D, Simon J, Kraemer DF, Murchison C, Hamilton BE (2013) Prevalence of brain magnetic resonance imaging meeting Barkhof and McDonald criteria for dissemination in space among headache patients. Mult Scler 19(8):1101–1105. https://doi.org/10.1177/1352458512471874

    Article  PubMed  Google Scholar 

  16. De Stefano N, Giorgio A, Tintore M, Pia Amato M, Kappos L, Palace J, Yousry T, Rocca MA, Ciccarelli O, Enzinger C, Frederiksen J, Filippi M, Vrenken H, Rovira A, group Ms (2018) Radiologically isolated syndrome or subclinical multiple sclerosis: MAGNIMS consensus recommendations. Mult Scler 24(2):214–221. https://doi.org/10.1177/1352458517717808

    Article  PubMed  Google Scholar 

  17. Swanton JK, Fernando K, Dalton CM, Miszkiel KA, Thompson AJ, Plant GT, Miller DH (2006) Modification of MRI criteria for multiple sclerosis in patients with clinically isolated syndromes. J Neurol Neurosurg Psychiatry 77(7):830–833. https://doi.org/10.1136/jnnp.2005.073247

    Article  CAS  PubMed  Google Scholar 

  18. Carnero Contentti E, Pettinicchi JP, Caride A, Lopez PA (2018) Decision-making on radiologically isolated syndrome among Argentinean neurologists: a survey based on clinical experience. Mult Scler Relat Disord 27:61–64. https://doi.org/10.1016/j.msard.2018.09.030

    Article  PubMed  Google Scholar 

  19. Gabelic T, Radmilovic M, Posavec V, Skvorc A, Boskovic M, Adamec I, Milivojevic I, Barun B, Habek M (2013) Differences in oligoclonal bands and visual evoked potentials in patients with radiologically and clinically isolated syndrome. Acta neurologica Belgica 113(1):13–17. https://doi.org/10.1007/s13760-012-0106-1

    Article  PubMed  Google Scholar 

  20. Knier B, Berthele A, Buck D, Schmidt P, Zimmer C, Muhlau M, Hemmer B, Korn T (2016) Optical coherence tomography indicates disease activity prior to clinical onset of central nervous system demyelination. Mult Scler 22(7):893–900. https://doi.org/10.1177/1352458515604496

    Article  CAS  PubMed  Google Scholar 

  21. Lebrun C, Bensa C, Debouverie M, Wiertlevski S, Brassat D, de Seze J, Rumbach L, Pelletier J, Labauge P, Brochet B, Tourbah A, Clavelou P, Club Francophone de la Sclerose en P (2009) Association between clinical conversion to multiple sclerosis in radiologically isolated syndrome and magnetic resonance imaging, cerebrospinal fluid, and visual evoked potential: follow-up of 70 patients. Arch Neurol 66(7):841–846. https://doi.org/10.1001/archneurol.2009.119

    Article  PubMed  Google Scholar 

  22. Lebrun C, Kantarci OH, Siva A, Pelletier D, Okuda DT, Risconsortium (2018) Anomalies characteristic of central nervous system demyelination: radiologically isolated syndrome. Neurologic clinics 36(1):59–68. https://doi.org/10.1016/j.ncl.2017.08.004

    Article  PubMed  Google Scholar 

  23. Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sorensen PS, Thompson AJ, Wolinsky JS, Balcer LJ, Banwell B, Barkhof F, Bebo B Jr, Calabresi PA, Clanet M, Comi G, Fox RJ, Freedman MS, Goodman AD, Inglese M, Kappos L, Kieseier BC, Lincoln JA, Lubetzki C, Miller AE, Montalban X, O’Connor PW, Petkau J, Pozzilli C, Rudick RA, Sormani MP, Stuve O, Waubant E, Polman CH (2014) Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 83(3):278–286. https://doi.org/10.1212/WNL.0000000000000560

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lebrun-Frenay C, Kantarci O, Siva A, Sormani MP, Pelletier D, Okuda DT, 10-year RISC study group on behalf of SFSEP OFSEP (2020) Radiologically isolated syndrome: 10-year risk estimate of a clinical event. Ann Neurol. 88(2):407–417. https://doi.org/10.1002/ana.25799

    Article  CAS  PubMed  Google Scholar 

  25. Arrambide G, Rovira A, Sastre-Garriga J, Tur C, Castillo J, Rio J, Vidal-Jordana A, Galan I, Rodriguez-Acevedo B, Midaglia L, Nos C, Mulero P, Arevalo MJ, Comabella M, Huerga E, Auger C, Montalban X, Tintore M (2018) Spinal cord lesions: a modest contributor to diagnosis in clinically isolated syndromes but a relevant prognostic factor. Mult Scler 24(3):301–312. https://doi.org/10.1177/1352458517697830

    Article  PubMed  Google Scholar 

  26. Patrucco L, Rojas JI, Cristiano E (2012) Assessing the value of spinal cord lesions in predicting development of multiple sclerosis in patients with clinically isolated syndromes. J Neurol 259(7):1317–1320. https://doi.org/10.1007/s00415-011-6345-x

    Article  CAS  PubMed  Google Scholar 

  27. Sombekke MH, Wattjes MP, Balk LJ, Nielsen JM, Vrenken H, Uitdehaag BM, Polman CH, Barkhof F (2013) Spinal cord lesions in patients with clinically isolated syndrome: a powerful tool in diagnosis and prognosis. Neurology 80(1):69–75. https://doi.org/10.1212/WNL.0b013e31827b1a67

    Article  PubMed  Google Scholar 

  28. Okuda DT, Mowry EM, Cree BA, Crabtree EC, Goodin DS, Waubant E, Pelletier D (2011) Asymptomatic spinal cord lesions predict disease progression in radiologically isolated syndrome. Neurology 76(8):686–692. https://doi.org/10.1212/WNL.0b013e31820d8b1d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Okuda DT, Siva A, Kantarci O, Inglese M, Katz I, Tutuncu M, Keegan BM, Donlon S, Hua LH, Vidal-Jordana A, Montalban X, Rovira A, Tintore M, Amato MP, Brochet B, de Seze J, Brassat D, Vermersch P, De Stefano N, Sormani MP, Pelletier D, Lebrun C, Radiologically Isolated Syndrome Consortium (RISC), Club Francophone de la Sclerose en Consortium (RISC) (2014) Radiologically isolated syndrome: 5-year risk for an initial clinical event. PLoS One 9(3):e90509. https://doi.org/10.1371/journal.pone.0090509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kantarci OH, Lebrun C, Siva A, Keegan MB, Azevedo CJ, Inglese M, Tintore M, Newton BD, Durand-Dubief F, Amato MP, De Stefano N, Sormani MP, Pelletier D, Okuda DT (2016) Primary progressive multiple sclerosis evolving from radiologically isolated syndrome. Ann Neurol 79(2):288–294. https://doi.org/10.1002/ana.24564

    Article  PubMed  Google Scholar 

  31. Alcaide-Leon P, Cybulsky K, Sankar S, Casserly C, Leung G, Hohol M, Selchen D, Montalban X, Bharatha A, Oh J (2018) Quantitative spinal cord MRI in radiologically isolated syndrome. Neurol Neuroimmunol Neuroinflamm 5(2):e436. https://doi.org/10.1212/nxi.0000000000000436

    Article  PubMed  PubMed Central  Google Scholar 

  32. Casserly C, Seyman EE, Alcaide-Leon P, Guenette M, Lyons C, Sankar S, Svendrovski A, Baral S, Oh J (2018) Spinal cord atrophy in multiple sclerosis: a systematic review and meta-analysis. J Neuroimaging 28(6):556–586. https://doi.org/10.1111/jon.12553

    Article  PubMed  Google Scholar 

  33. Zeydan B, Gu X, Atkinson EJ, Keegan BM, Weinshenker BG, Tillema JM, Pelletier D, Azevedo CJ, Lebrun-Frenay C, Siva A, Okuda DT, Kantarci K, Kantarci OH (2018) Cervical spinal cord atrophy: an early marker of progressive MS onset. Neurol Neuroimmunol Neuroinflamm 5(2):e435. https://doi.org/10.1212/NXI.0000000000000435

    Article  PubMed  PubMed Central  Google Scholar 

  34. Giorgio A, Stromillo ML, Rossi F, Battaglini M, Hakiki B, Portaccio E, Federico A, Amato MP, De Stefano N (2011) Cortical lesions in radiologically isolated syndrome. Neurology 77(21):1896–1899. https://doi.org/10.1212/WNL.0b013e318238ee9b

    Article  CAS  PubMed  Google Scholar 

  35. Labiano-Fontcuberta A, Benito-Leon J (2016) Radiologically isolated syndrome: an update on a rare entity. Mult Scler 22(12):1514–1521. https://doi.org/10.1177/1352458516653666

    Article  PubMed  Google Scholar 

  36. Labiano-Fontcuberta A, Mato-Abad V, Alvarez-Linera J, Hernandez-Tamames JA, Martinez-Gines ML, Aladro Y, Ayuso L, Domingo-Santos A, Benito-Leon J (2016) Gray matter involvement in radiologically isolated syndrome. Medicine 95(13):e3208. https://doi.org/10.1097/MD.0000000000003208

    Article  PubMed  PubMed Central  Google Scholar 

  37. Azevedo CJ, Overton E, Khadka S, Buckley J, Liu S, Sampat M, Kantarci O, Lebrun Frenay C, Siva A, Okuda DT, Pelletier D (2015) Early CNS neurodegeneration in radiologically isolated syndrome. Neurol Neuroimmunol Neuroinflamm 2(3):e102. https://doi.org/10.1212/NXI.0000000000000102

    Article  PubMed  PubMed Central  Google Scholar 

  38. De Stefano N, Stromillo ML, Rossi F, Battaglini M, Giorgio A, Portaccio E, Hakiki B, Malentacchi G, Gasperini C, Santangelo M, Bartolozzi ML, Sormani MP, Federico A, Amato MP (2011) Improving the characterization of radiologically isolated syndrome suggestive of multiple sclerosis. PLoS One 6(4):e19452. https://doi.org/10.1371/journal.pone.0019452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Giorgio A, Stromillo ML, De Leucio A, Rossi F, Brandes I, Hakiki B, Portaccio E, Amato MP, De Stefano N (2015) Appraisal of brain connectivity in radiologically isolated syndrome by modeling imaging measures. J Neurosci 35(2):550–558. https://doi.org/10.1523/JNEUROSCI.2557-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sati P, Oh J, Constable RT, Evangelou N, Guttmann CR, Henry RG, Klawiter EC, Mainero C, Massacesi L, McFarland H, Nelson F, Ontaneda D, Rauscher A, Rooney WD, Samaraweera AP, Shinohara RT, Sobel RA, Solomon AJ, Treaba CA, Wuerfel J, Zivadinov R, Sicotte NL, Pelletier D, Reich DS, Cooperative N (2016) The central vein sign and its clinical evaluation for the diagnosis of multiple sclerosis: a consensus statement from the North American Imaging in Multiple Sclerosis Cooperative. Nat Rev Neurol 12(12):714–722. https://doi.org/10.1038/nrneurol.2016.166

    Article  PubMed  Google Scholar 

  41. Suthiphosuwan S, Sati P, Guenette M, Montalban X, Reich DS, Bharatha A, Oh J (2019) The central vein sign in radiologically isolated syndrome. AJNR Am J Neuroradiol. https://doi.org/10.3174/ajnr.A6045

  42. Labiano-Fontcuberta A, Mato-Abad V, Alvarez-Linera J, Hernandez-Tamames JA, Martinez-Gines ML, Aladro Y, Ayuso L, Domingo-Santos A, Benito-Leon J (2016) Normal-appearing brain tissue analysis in radiologically isolated syndrome using 3 T MRI. Medicine 95(27):e4101. https://doi.org/10.1097/MD.0000000000004101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stromillo ML, Giorgio A, Rossi F, Battaglini M, Hakiki B, Malentacchi G, Santangelo M, Gasperini C, Bartolozzi ML, Portaccio E, Amato MP, De Stefano N (2013) Brain metabolic changes suggestive of axonal damage in radiologically isolated syndrome. Neurology 80(23):2090–2094. https://doi.org/10.1212/WNL.0b013e318295d707

    Article  CAS  PubMed  Google Scholar 

  44. Link H, Huang YM (2006) Oligoclonal bands in multiple sclerosis cerebrospinal fluid: an update on methodology and clinical usefulness. J Neuroimmunol 180(1-2):17–28. https://doi.org/10.1016/j.jneuroim.2006.07.006

    Article  CAS  PubMed  Google Scholar 

  45. Paolino E, Fainardi E, Ruppi P, Tola MR, Govoni V, Casetta I, Monetti VC, Granieri E, Carreras M (1996) A prospective study on the predictive value of CSF oligoclonal bands and MRI in acute isolated neurological syndromes for subsequent progression to multiple sclerosis. J Neurol Neurosurg Psychiatry 60(5):572–575

    Article  CAS  Google Scholar 

  46. Oligoclonal bands and MRI in clinically isolated syndromes: predicting conversion time to multiple sclerosis (2010). J Neurol 257(7):1188-1191. https://doi.org/10.1007/s00415-010-5490-y

  47. Matute-Blanch C, Villar LM, Alvarez-Cermeno JC, Rejdak K, Evdoshenko E, Makshakov G, Nazarov V, Lapin S, Midaglia L, Vidal-Jordana A, Drulovic J, Garcia-Merino A, Sanchez-Lopez AJ, Havrdova E, Saiz A, Llufriu S, Alvarez-Lafuente R, Schroeder I, Zettl UK, Galimberti D, Ramio-Torrenta L, Robles R, Quintana E, Hegen H, Deisenhammer F, Rio J, Tintore M, Sanchez A, Montalban X, Comabella M (2018) Neurofilament light chain and oligoclonal bands are prognostic biomarkers in radiologically isolated syndrome. Brain 141(4):1085–1093. https://doi.org/10.1093/brain/awy021

    Article  PubMed  Google Scholar 

  48. Teunissen CE, Iacobaeus E, Khademi M, Brundin L, Norgren N, Koel-Simmelink MJ, Schepens M, Bouwman F, Twaalfhoven HA, Blom HJ, Jakobs C, Dijkstra CD (2009) Combination of CSF N-acetylaspartate and neurofilaments in multiple sclerosis. Neurology 72(15):1322–1329. https://doi.org/10.1212/WNL.0b013e3181a0fe3f

    Article  CAS  PubMed  Google Scholar 

  49. Arrambide G, Espejo C, Eixarch H, Villar LM, Alvarez-Cermeno JC, Picon C, Kuhle J, Disanto G, Kappos L, Sastre-Garriga J, Pareto D, Simon E, Comabella M, Rio J, Nos C, Tur C, Castillo J, Vidal-Jordana A, Galan I, Arevalo MJ, Auger C, Rovira A, Montalban X, Tintore M (2016) Neurofilament light chain level is a weak risk factor for the development of MS. Neurology 87(11):1076–1084. https://doi.org/10.1212/WNL.0000000000003085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Martinez MA, Olsson B, Bau L, Matas E, Cobo Calvo A, Andreasson U, Blennow K, Romero-Pinel L, Martinez-Yelamos S, Zetterberg H (2015) Glial and neuronal markers in cerebrospinal fluid predict progression in multiple sclerosis. Mult Scler 21(5):550–561. https://doi.org/10.1177/1352458514549397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pawlitzki M, Sweeney-Reed CM, Bittner D, Lux A, Vielhaber S, Schreiber S, Paul F, Neumann J (2018) CSF-progranulin and neurofilament light chain levels in patients with radiologically isolated syndrome-sign of inflammation. Front Neurology 9:1075. https://doi.org/10.3389/fneur.2018.01075

    Article  Google Scholar 

  52. Thouvenot E, Hinsinger G, Demattei C, Uygunoglu U, Castelnovo G, Pittion-Vouyovitch S, Okuda D, Kantarci O, Pelletier D, Lehmann S, Marin P, Siva A, Lebrun C (2019) Cerebrospinal fluid chitinase-3-like protein 1 level is not an independent predictive factor for the risk of clinical conversion in radiologically isolated syndrome. Mult Scler 25(5):669–677. https://doi.org/10.1177/1352458518767043

    Article  CAS  PubMed  Google Scholar 

  53. Canto E, Tintore M, Villar LM, Costa C, Nurtdinov R, Alvarez-Cermeno JC, Arrambide G, Reverter F, Deisenhammer F, Hegen H, Khademi M, Olsson T, Tumani H, Rodriguez-Martin E, Piehl F, Bartos A, Zimova D, Kotoucova J, Kuhle J, Kappos L, Garcia-Merino JA, Sanchez AJ, Saiz A, Blanco Y, Hintzen R, Jafari N, Brassat D, Lauda F, Roesler R, Rejdak K, Papuc E, de Andres C, Rauch S, Khalil M, Enzinger C, Galimberti D, Scarpini E, Teunissen C, Sanchez A, Rovira A, Montalban X, Comabella M (2015) Chitinase 3-like 1: prognostic biomarker in clinically isolated syndromes. Brain 138(Pt 4):918–931. https://doi.org/10.1093/brain/awv017

    Article  PubMed  Google Scholar 

  54. Rossi S, Motta C, Studer V, Macchiarulo G, Germani G, Finardi A, Furlan R, Martino G, Centonze D (2015) Subclinical central inflammation is risk for RIS and CIS conversion to MS. Mult Scler 21(11):1443–1452. https://doi.org/10.1177/1352458514564482

    Article  CAS  PubMed  Google Scholar 

  55. Lebrun C, Cohen M, Pignolet B, Seitz-Polski B, Bucciarelli F, Benzaken S, Kantarci O, Siva A, Okuda D, Pelletier D, Brassat D, on behalf Sfsep BN, Risc (2016) Interleukin 17 alone is not a discriminant biomarker in early demyelinating spectrum disorders. J Neurol Sci 368:334–336. https://doi.org/10.1016/j.jns.2016.07.052

    Article  CAS  PubMed  Google Scholar 

  56. Alonso R, Gonzalez-Moron D, Garcea O (2018) Optical coherence tomography as a biomarker of neurodegeneration in multiple sclerosis: a review. Mult Scler Relat Disord 22:77–82. https://doi.org/10.1016/j.msard.2018.03.007

    Article  PubMed  Google Scholar 

  57. Bonzano L, Bove M, Sormani MP, Stromillo ML, Giorgio A, Amato MP, Tacchino A, Mancardi GL, De Stefano N (2019) Subclinical motor impairment assessed with an engineered glove correlates with magnetic resonance imaging tissue damage in radiologically isolated syndrome. Eur J Neurol 26(1):162–167. https://doi.org/10.1111/ene.13789

    Article  CAS  PubMed  Google Scholar 

  58. Amato MP, Hakiki B, Goretti B, Rossi F, Stromillo ML, Giorgio A, Roscio M, Ghezzi A, Guidi L, Bartolozzi ML, Portaccio E, De Stefano N, Italian RISMSSG (2012) Association of MRI metrics and cognitive impairment in radiologically isolated syndromes. Neurology 78(5):309–314. https://doi.org/10.1212/WNL.0b013e31824528c9

    Article  CAS  PubMed  Google Scholar 

  59. Lebrun C, Blanc F, Brassat D, Zephir H, de Seze J, Cfsep (2010) Cognitive function in radiologically isolated syndrome. Mult Scler 16(8):919–925. https://doi.org/10.1177/1352458510375707

    Article  PubMed  Google Scholar 

  60. Labiano-Fontcuberta A, Martinez-Gines ML, Aladro Y, Ayuso L, Mitchell AJ, Puertas-Martin V, Cerezo M, Higueras Y, Benito-Leon J (2016) A comparison study of cognitive deficits in radiologically and clinically isolated syndromes. Mult Scler 22(2):250–253. https://doi.org/10.1177/1352458515591072

    Article  PubMed  Google Scholar 

  61. ‘ACTRIMS ABSTRACTS: EMERGING THERAPIES IN MULTIPLE SCLEROSIS Basic and Clinical Issues in Multiple Sclerosis Research ACTRIMS? 12th annual meeting, June 2, 2007 Washington, DC’ (2007). Multiple Sclerosis Journal 13 (9):1205-1244. doi:https://doi.org/10.1177/1352458507084680

  62. Etemadifar M, Janghorbani M, Koushki MM, Etemadifar F, Esfahani MF (2014) Conversion from radiologically isolated syndrome to multiple sclerosis. Int J Prev Med 5(11):1379–1386

    PubMed  PubMed Central  Google Scholar 

  63. Lebrun C, Bensa C, Debouverie M, De Seze J, Wiertlievski S, Brochet B, Clavelou P, Brassat D, Labauge P, Roullet E, Cfsep (2008) Unexpected multiple sclerosis: follow-up of 30 patients with magnetic resonance imaging and clinical conversion profile. J Neurol Neurosurg Psychiatry 79(2):195–198. https://doi.org/10.1136/jnnp.2006.108274

    Article  CAS  PubMed  Google Scholar 

  64. Lebrun C, Le Page E, Kantarci O, Siva A, Pelletier D, Okuda DT, Club Francophone de Sclerose en P, Radiologically Isolated Syndrome Consortium G (2012) Impact of pregnancy on conversion to clinically isolated syndrome in a radiologically isolated syndrome cohort. Mult Scler 18(9):1297–1302. https://doi.org/10.1177/1352458511435931

    Article  CAS  PubMed  Google Scholar 

  65. Maia AC Jr, Rocha AJ, Barros BR, Tilbery CP (2012) Incidental demyelinating inflammatory lesions in asymptomatic patients: a Brazilian cohort with radiologically isolated syndrome and a critical review of current literature. Arquivos de neuro-psiquiatria 70(1):5–11

    Article  Google Scholar 

  66. Sierra-Marcos A, Mitjana R, Castillo J, Edo MC, Horga-Hernandez A, Tintore M, Rio-Izquierdo J, Auger-Acosta C, Rovira A, Montalban X (2010) Demyelinating lesions as incidental findings in magnetic resonance imaging: a study of 11 cases with clinico-radiological follow-up and a review of the literature. Revista de neurologia 51(3):129–134

    Article  Google Scholar 

  67. Siva A, Saip S, Altintas A, Jacob A, Keegan BM, Kantarci OH (2009) Multiple sclerosis risk in radiologically uncovered asymptomatic possible inflammatory-demyelinating disease. Mult Scler 15(8):918–927. https://doi.org/10.1177/1352458509106214

    Article  CAS  PubMed  Google Scholar 

  68. Abstracts of the Nineteenth Meeting of the European Neurological Society. June 20-24, 2009. Milan, Italy (2009). J Neurol 256 Suppl 2:S3-250. https://doi.org/10.1007/s00415-009-5161-z

  69. Lebrun C, Cohen M, Chaussenot A, Mondot L, Chanalet S (2014) A prospective study of patients with brain MRI showing incidental t2 hyperintensities addressed as multiple sclerosis: a lot of work to do before treating. Neurology and therapy 3(2):123–132. https://doi.org/10.1007/s40120-014-0024-7

    Article  PubMed  PubMed Central  Google Scholar 

  70. Okuda D, Lebrun Frenay C, Siva A, Hotermans C, Von Hehn C, Remington G, Newton B, Frohman T, Frohman E, Kantarci O, Pelletier D (2015) Multi-center, randomized, double-blinded assessment of dimethyl fumarate in extending the time to a first attack in radiologically isolated syndrome (RIS) (ARISE Trial) (P7.207). Neurology 84(14 Supplement):P7.207

    Google Scholar 

  71. Lebrun C, Siva A, Kantarci O, Azevedo C, Sormani M, Pelletier D, Okuda D Multi-center, randomized, double-blinded assessment of teriflunomide in extending the time to a first clinical event in radiologically isolated syndrome (RIS) (TERIS study). In: Multiple sclerosis journal, 2016. SAGE PUBLICATIONS LTD 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND, pp 779-779

  72. Alshamrani F, Alnajashi H, Freedman M (2017) Radiologically isolated syndrome: watchful waiting vs. active treatment. Expert Rev Neurother 17(5):441–447. https://doi.org/10.1080/14737175.2017.1259568

    Article  CAS  PubMed  Google Scholar 

  73. Garcia-Dominguez JM, Munoz D, Comellas M, Gonzalbo I, Lizan L, Polanco Sanchez C (2016) Patient preferences for treatment of multiple sclerosis with disease-modifying therapies: a discrete choice experiment. Patient Prefer Adherence 10:1945–1956. https://doi.org/10.2147/PPA.S114619

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Irrestrictive research grant from Novartis Argentina allowed the development and implementation of the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andres G. Barboza.

Ethics declarations

Conflict of interest

AGB has received reimbursement for developing educational presentations, educational and research grants, consultations fees, and travel stipends from Biogen, Genzyme, Novartis, TEVA, Tuteur, Gador, Raffo, Biosidus, Synthon – Bagó, and Roche.

ECC has received professional travel accommodation stipends from Merck-Serono, TEVA, Genzyme, Biogen-Idec, and Novartis. ECC has also received reimbursement for developing educational presentations from Merck-Serono, Genzyme, Biogen-Idec, Roche, and Novartis as well as grants for research from Novartis, Bayer, and Merck-Serono.

MCC works as a medical scientific liaison for Novartis, Argentina.

MJH has received professional travel accommodation stipends from Biogen-Idec, Novartis, Genzyme, Gador, Roche, TEVA, and Merck-Serono. MJH has also received reimbursement for educational presentations from Biogen-Idec, Genzyme, and Novartis as well as grants for research from Novartis and Genzyme.

BAS has received economic retribution for the development of educational, scientific activities and travel grants to Congresses from Biogen, Novartis, Merck, Genzyme, and TEVA.

VS has received reimbursement for developing educational presentations, educational and research grants, consultations fees, and travel stipends from Bayer, Biogen, Genzyme, Merck, Novartis, Roche, Biosidus, Gador, and Raffo.

ST has received professional travel accommodation stipends from Merck-Serono, Synthon Bago, Biogen-Idec, TEVA, Genzyme, Novartis, and Roche. ST has also received reimbursement for developing educational presentations from Biogen-Idec and Novartis.

MCY has received reimbursement for developing educational presentations and travel/accommodations stipends from Merck-Serono Argentina, Biogen-Idec Argentina, Genzyme Argentina, Bayer Inc., Novartis Argentina, and TEVA-Tuteur Argentina.

RA has received professional travel accommodation stipends from Merck, Synthon Bago, Biogen-Idec, Novartis, and Roche. RA has also received reimbursement for developing educational presentations from Genzyme, Biogen-Idec, Roche, and Novartis.

Ethical approval

All of the authors.

Informed consent

None.

Disclaimer

The grants did not interfere in the development plan, variables, PI selection, or other aspects of the project.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barboza, A.G., Carnero Contentti, E., Curbelo, M.C. et al. Radiologically isolated syndrome: from biological bases to practical management. Neurol Sci 42, 1335–1344 (2021). https://doi.org/10.1007/s10072-021-05069-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-021-05069-6

Keywords

Navigation