Skip to main content

Advertisement

Log in

Migraine neuroscience: from experimental models to target therapy

  • KEY LECTURE
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Migraine sciences have witnessed tremendous advances in recent years. Pre-clinical and clinical experimental models have contributed significantly to provide useful insights into the brain structures that mediate migraine attacks. These models have contributed to elucidate the role of neurotransmission pathways and to identify the role of important molecules within the complex network involved in migraine pathogenesis. The contribution and efforts of several research groups from all over the world has ultimately lead to the generation of novel therapeutic approaches, specifically targeted for the prevention of migraine attacks, the monoclonal antibodies directed against calcitonin gene-related peptide or its receptor. These drugs have been validated in randomized placebo-controlled trials and are now ready to improve the lives of a large multitude of migraine sufferers. Others are in the pipeline and will soon be available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreou AP, Edvinsson L (2019) Mechanisms of migraine as a chronic evolutive condition. J Headache Pain 20(1):117

    PubMed  PubMed Central  Google Scholar 

  2. Gormley P, Anttila V, Winsvold BS et al (2016) Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine. Nat Genet 48(8):856–866

    CAS  PubMed  PubMed Central  Google Scholar 

  3. de Boer I, van den Maagdenberg AMJM, Terwindt GM (2019) Advance in genetics of migraine. Curr Opin Neurol 32(3):413–421

    PubMed  PubMed Central  Google Scholar 

  4. Mainero C, Boshyan J, Hadjikhani N (2011) Altered functional magnetic resonance imaging resting-state connectivity in periaqueductal gray networks in migraine. Ann Neurol 70(5):838–845

    PubMed  PubMed Central  Google Scholar 

  5. Da Silva AF, Granziera C, Tuch DS, Snyder J, Vincent M, Hadjikhani N (2007) Interictal alterations of the trigeminal somatosensory pathway and periaqueductal gray matter in migraine. Neuroreport. 18(4):301–305

    Google Scholar 

  6. Maleki N, Becerra L, Nutile L, Pendse G, Brawn J, Bigal M, Burstein R, Borsook D (2011) Migraine attacks the basal ganglia. Mol Pain 7:71

    PubMed  PubMed Central  Google Scholar 

  7. Coppola G, Di Lorenzo C, Schoenen J, Pierelli F (2013) Habituation and sensitization in primary headaches. J Headache Pain 14(1):65

    PubMed  PubMed Central  Google Scholar 

  8. Dodick DW (2019) CGRP ligand and receptor monoclonal antibodies for migraine prevention: evidence review and clinical implications. Cephalalgia 2019 39:445–458

    Google Scholar 

  9. Mehrotra S, Gupta S, Garrelds IM, Villalón CM, Saxena PR, Bogers AJ, Maassenvandenbrink A (2006) Effects of current and prospective antimigraine drugs on the porcine isolated meningeal artery. Naunyn Schmiedebergs Arch Pharmacol 374(3):163–175

    CAS  PubMed  Google Scholar 

  10. Franco-Cereceda A, Rudehill A, Lundberg JM (1987) Calcitonin gene-related peptide but not substance P mimics capsaicin-induced coronary vasodilation in the pig. Eur J Pharmacol 142(2):235–243

    CAS  PubMed  Google Scholar 

  11. Bouchelet I, Case B, Olivier A, Hamel E (2000) No contractile effect for 5-HT1D and 5-HT1F receptor agonists in human and bovine cerebral arteries: similarity with human coronary artery. Br J Pharmacol 129(3):501–508

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sheykhzade M, Amandi N, Pla MV, Abdolalizadeh B, Sams A, Warfvinge K, Edvinsson L, Pickering DS (2017) Binding and functional pharmacological characteristics of gepant-type antagonists in rat brain and mesenteric arteries. Vascul Pharmacol 90:36–43

    CAS  PubMed  Google Scholar 

  13. Maassenvandenbrink A, Chan KY (2008) Neurovascular pharmacology of migraine. Eur J Pharmacol 585(2–3):313–319

    CAS  PubMed  Google Scholar 

  14. De Vries P, Villalón CM, Saxena PR (1999) Pharmacological aspects of experimental models in relation to acute antimigraine therapy. Eur J Pharmacol 375(1–3):61–74

    PubMed  Google Scholar 

  15. Williamson DJ, Hargreaves RJ, Hill RG, Shepheard SL (1997) Sumatriptan inhibits neurogenic vasodilation of dural blood vessels in the anaesthetized rat—intravital microscope studies. Cephalalgia 17:525–531

    CAS  PubMed  Google Scholar 

  16. Akerman S, Kaube H, Goadsby PJ (2004) Anandamide acts as a vasodilator of dural blood vessels in vivo by activating TRPV1 receptors. Br J Pharmacol 142:1354–1360

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Akerman S, Kaube H, Goadsby PJ (2003) Vanilloid type 1 receptors (VR1) on trigeminal sensory nerve fibres play a minor role in neurogenic dural vasodilatation, and are involved in capsaicin-induced dural dilation. Br J Pharmacol 140:718–724

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Haanes KA, Labastida-Ramírez A, Blixt FW, Rubio-Beltrán E, Dirven CM, Danser AH, Edvinsson L, MaassenVanDenBrink A (2019) Exploration of purinergic receptors aspotential anti-migraine targets using established pre-clinical migraine models. Cephalalgia 39(11):1421–1434

    PubMed  Google Scholar 

  19. Petersen KA, Birk S, Doods H, Edvinsson L, Olesen J (2004) Inhibitory effect of BIBN4096BS on cephalic vasodilatation induced by CGRP or transcranial electrical stimulation in the rat. Br J Pharmacol 43(6):697–704

    Google Scholar 

  20. Connor HE, Stubbs CM, Feniuk W, Humphrey PP (1992) Effect of sumatriptan, a selective 5-HT1-like receptor agonist, on pial vessel diameter in anaesthetized cats. J Cereb Blood Flow Metab 12(3):514–519

    CAS  PubMed  Google Scholar 

  21. Juhl L, Petersen KA, Larsen EH, Jansen-Olesen I, Olesen J (2006) The in vivo effect of adrenomedullin on rat dural and pial arteries. Eur J Pharmacol 538(1–3):101–107

    CAS  PubMed  Google Scholar 

  22. Wang X, Fang Y, Liang J, Yan M, Hu R, Pan X (2014) 5-HT7 receptors are involved in neurogenic dural vasodilatation in an experimental model of migraine. J Mol Neurosci 54(2):164–170

    CAS  PubMed  Google Scholar 

  23. Malhotra R (2016) Understanding migraine: potential role of neurogenic inflammation. Ann Indian Acad Neurol 19(2):175–182

    PubMed  PubMed Central  Google Scholar 

  24. Zakharov A, Vitale C, Kilinc E, Koroleva K, Fayuk D, Shelukhina I, Naumenko N, Skorinkin A, Khazipov R, Giniatullin R (2015) Hunting for origins of migraine pain: cluster analysis of spontaneous and capsaicin-induced firing in meningeal trigeminal nerve fibers. Front Cell Neurosci 9:287

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Knyihar-Csillik E, Tajti J, Mohtasham S, Sari G, Vecsei L (1995) Electrical stimulation of the Gasserian ganglion induces structural alterations of calcitonin gene-related peptide-immunoreactive perivascular sensory nerve terminals in the rat cerebral dura mater: a possible model of migraine headache. Neurosci Lett 184(3):189–192

    CAS  PubMed  Google Scholar 

  26. Limmroth V, Katsarava Z, Liedert B, Guehring H, Schmitz K, Diener HC, Michel MC (2001) An in vivo rat model to study calcitonin gene related peptide release following activation of the trigeminal vascular system. Pain 92(1–2):101–106

    CAS  PubMed  Google Scholar 

  27. Markowitz S, Saito K, Moskowitz MA (1987) Neurogenically mediated leakage of plasma protein occurs from blood vessels in dura mater but not brain. J Neurosci 7:4129–4136

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Buzzi MG, Moskowitz MA (1990) The antimigraine drug, sumatriptan (GR43175), selectively blocks neurogenic plasma extravasation from blood vessels in dura mater. Br J Pharmacol 99:202–206

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Knyihar-Csillik E et al (1997) Effect of a serotonin agonist (sumatriptan) on the peptidergic innervation of the rat cerebral dura mater and on the expression of c-fos in the caudal trigeminal nucleus in an experimental migraine model. J Neurosci Res 48(5):449–464

    CAS  PubMed  Google Scholar 

  30. Bohár Z, Fejes-Szabó A, Tar L, Varga H, Tajti J, Párdutz Á, Vécsei L (2013) Evaluation of c-Fos immunoreactivity in the rat brainstem nuclei relevant in migraine pathogenesis after electrical stimulation of the trigeminal ganglion. Neurol Sci 34(9):1597–1604

    PubMed  Google Scholar 

  31. Buzzi MG, Carter WB, Shimizu T, Heath H III, Moskowitz MA (1991) Dihydroergotamine and sumatriptan attenuate levels of CGRP in plasma in rat superior sagittal sinus during electrical stimulation of the trigeminal ganglion. Neuropharmacology 30:1193–1200

    CAS  PubMed  Google Scholar 

  32. Zhang Q, Han X, Wu H, Zhang M, Hu G, Dong Z, Yu S (2019) Dynamic changes in CGRP, PACAP, and PACAP receptors in the trigeminovascular system of a novel repetitive electrical stimulation rat model: relevant to migraine. Mol Pain 15:1744806918820452

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Körtési T, Tuka B, Tajti J, Bagoly T, Fülöp F, Helyes Z, Vécsei L (2018) Kynurenic acid inhibits the electrical stimulation induced elevated pituitary adenylate cyclase-activating polypeptide expression in the TNC. Front Neurol 8:745

    PubMed  PubMed Central  Google Scholar 

  34. Humphrey PP, Feniuk W, Perren MJ, Connor HE, Oxford AW, Coates LH, Butina D (1988) GR43175, a selective agonist for the 5-HT1-like receptor in dog isolated saphenous vein. Br J Pharmacol 94:1123–1132

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zagami AS, Goadsby PJ, Edvinsson L (1990) Stimulation of the superior sagittal sinus in the cat causes release of vasoactive peptides. Neuropeptides 16(2):69–75

    CAS  PubMed  Google Scholar 

  36. Robert C, Bourgeais L, Arreto CD, Condes-Lara M, Noseda R, Jay T, Villanueva L (2013) Paraventricular hypothalamic regulation of trigeminovascular mechanisms involved in headaches. J Neurosci 33(20):8827–8840

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Holland PR, Akerman S, Andreou AP, Karsan N, Wemmie JA, Goadsby PJ (2012) Acid-sensing ion channel 1: a novel therapeutic target for migraine with aura. Ann Neurol 72(4):559–563

    CAS  PubMed  Google Scholar 

  38. Kaube H, Keay KA, Hoskin KL, Bandler R, Goadsby PJ (1993) Expression of c-Fos-like immunoreactivity in the caudal medulla and upper cervical spinal cord following stimulation of the superior sagittal sinus in the cat. Brain Res 629(1):95–102

    CAS  PubMed  Google Scholar 

  39. Kaube H, Hoskin KL, Goadsby PJ (1994) Acetylsalicylic acid inhibits cerebral cortical vasodilatation caused by superior sagittal sinus stimulation in the cat. Eur J Neurol 1(2):141–146

    CAS  PubMed  Google Scholar 

  40. Goadsby PJ, Hoskin KL (1999) Differential effects of low dose CP122,288 and eletriptan on fos expression due to stimulation of the superior sagittal sinus in cat. Pain 82:15–22

    CAS  PubMed  Google Scholar 

  41. Hoskin KL, Goadsby PJ (1998) Comparison of a more and less lipophilic serotonin (5HT1B/1D) agonist in a model of trigeminovascular nociception in cat. Exp Neurol 150:45–51

    CAS  PubMed  Google Scholar 

  42. Kurosawa M, Messlinger K, Pawlak M, Schmidt RF (1995) Increase of meningeal blood flow after electrical stimulation of rat dura mater encephali: mediation by calcitonin gene-related peptide. Br J Pharmacol 114:1397–1402

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Messlinger K, Hotta H, Pawlak M, Schmidt RF (1997) Effects of the 5-HT1 receptor agonists, sumatriptan and CP 93,129, on dural arterial flow in the rat. Eur J Pharmacol 332:173–181

    CAS  PubMed  Google Scholar 

  44. Mitsikostas DD, Sanchez del Rio M, Waeber C, Moskowitz MA, Cutrer FM (1998) The NMDA receptor antagonist MK-801 reduces capsaicin-induced c-fos expression within rat trigeminal nucleus caudalis. Pain 76:239–248

    CAS  PubMed  Google Scholar 

  45. Cutrer FM, Mitsikostas DD, Ayata G, Sanchez del Rio M (1999) Attenuation by butalbital of capsaicin-induced c-fos-like immunoreactivity in trigeminal nucleus caudalis. Headache 39:697–704

    CAS  PubMed  Google Scholar 

  46. Mitsikostas DD, Sanchez del Rio M (2001) Receptor systems mediating c-fos expression within trigeminal nucleus caudalis in animal models of migraine. Brain Res Rev 2001(35):20–35

    Google Scholar 

  47. Burstein R (2001) Deconstructing migraine headache into peripheral and central sensitization. Pain 89:107–110

    CAS  PubMed  Google Scholar 

  48. Laborc KF, Spekker E, Bohár Z, Szűcs M, Nagy-Grócz G, Fejes-Szabó A, Vécsei L, Párdutz Á (2020) Trigeminal activation patterns evoked by chemical stimulation of the dura mater in rats. J Headache Pain 21(1):101

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Becerra L, Bishop J, Barmettler G, Kainz V, Burstein R, Borsook D (2017) Brain network alterations in the inflammatory soup animal model of migraine. Brain Res 1660:36–46

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Edelmayer RM, Vanderah TW, Majuta L, Zhang ET, Fioravanti B, de Felice M, Chichorro JG, Ossipov MH, King T, Lai J, Kori SH, Nelsen AC, Cannon KE, Heinricher MM, Porreca F (2009) Medullary pain facilitating neurons mediate allodynia in headache-related pain. Ann Neurol 2009(65):184–193

    Google Scholar 

  51. Burgos-Vega CC, Quigley LD, Trevisan Dos Santos G, Yan F, Asiedu M, Jacobs B, Motina M, Safdar N, Yousuf H, Avona A, Price TJ, Dussor G (2019) Non-invasive dural stimulation in mice: a novel preclinical model of migraine. Cephalalgia. 39(1):123–134

    PubMed  Google Scholar 

  52. Boyer N, Signoret-Genest J, Artola A, Dallel R, Monconduit L (2017) Propranolol treatment prevents chronic central sensitization induced by repeated dural stimulation. Pain. 158(10):2025–2034

    CAS  PubMed  Google Scholar 

  53. Zhang M, Liu Y, Zhao M, Tang W, Wang X, Dong Z, Yu S (2017) Depression and anxiety behaviour in a rat model of chronic migraine. J Headache Pain 18(1):27

    PubMed  PubMed Central  Google Scholar 

  54. Chen N, Su W, Cui SH, Guo J, Duan JC, Li HX, He L (2019) A novel large animal model of recurrent migraine established by repeated administration of inflammatory soup into the dura mater of the rhesus monkey. Neural Regen Res 14(1):100–106

    PubMed  PubMed Central  Google Scholar 

  55. Ashina M, Hansen JM, Olesen J (2013) Pearls and pitfalls in human pharmacological models of migraine: 30 years’ experience. Cephalalgia 2013 33(8):540–553

    Google Scholar 

  56. Demartini C, Greco R, Zanaboni AM, Sances G, De Icco R, Borsook D, Tassorelli C (2019) Nitroglycerin as a comparative experimental model of migraine pain: from animal to human and back. Prog Neurobiol 177:15–32

    CAS  PubMed  Google Scholar 

  57. Greco R, Mangione AS, Sandrini G, Maccarrone M, Nappi G, Tassorelli C (2011) Effects of anandamide in migraine: data from an animal model. J Headache Pain 12(2):177–183

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Pradhan AA, Smith ML, McGuire B, Tarash I, Evans CJ, Charles A (2014) Characterization of a novel model of chronic migraine. Pain 155(2):269–274

    CAS  PubMed  Google Scholar 

  59. Bates EA, Nikai T, Brennan KC, Fu YH, Charles AC, Basbaum AI, Ptácek LJ, Ahn AH (2010) Sumatriptan alleviates nitroglycerin-induced mechanical and thermal allodynia in mice. Cephalalgia 30(2):170–178

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Greco R, Bandiera T, Mangione AS, Demartini C, Siani F, Nappi G, Sandrini G, Guijarro A, Armirotti A, Piomelli D, Tassorelli C (2015) Effects of peripheral FAAH blockade on NTG-induced hyperalgesia--evaluation of URB937 in an animal model of migraine. Cephalalgia. 35(12):1065–1076

    CAS  PubMed  Google Scholar 

  61. De Icco R, Fiamingo G, Greco R, Bottiroli S, Demartini C, Zanaboni AM, Allena M, Guaschino E, Martinelli D, Putortì A, Grillo V, Sances G, Tassorelli C (2020) Neurophysiological and biomolecular effects of erenumab in chronic migraine: an open label study. Cephalalgia. 26:333102420942230

    Google Scholar 

  62. Greco R, Demartini C, Zanaboni AM, Tassorelli C (2018) Chronic and intermittent administration of systemic nitroglycerin in the rat induces an increase in the gene expression of CGRP in central areas: potential contribution to pain processing. J Headache Pain 19(1):51

    PubMed  PubMed Central  Google Scholar 

  63. Tassorelli C, Greco R, Cappelletti D, Sandrini G, Nappi G (2005) Comparative analysis of the neuronal activation and cardiovascular effects of nitroglycerin, sodium nitroprusside and L-arginine. Brain Res 1051(1–2):17–24

    CAS  PubMed  Google Scholar 

  64. Koulchitsky S, Fischer MJ, Messlinger K (2009) Calcitonin gene-related peptide receptor inhibition reduces neuronal activity induced by prolonged increase in nitric oxide in the rat spinal trigeminal nucleus. Cephalalgia. 29(4):408–417

    CAS  PubMed  Google Scholar 

  65. Rea BJ, Wattiez AS, Waite JS, Castonguay WC, Schmidt CM, Fairbanks AM, Robertson BR, Brown CJ, Mason BN, Moldovan-Loomis MC, Garcia-Martinez LF, Poolman P, Ledolter J, Kardon RH, Sowers LP, Russo AF (2018) Peripherally administered calcitonin gene-related peptide induces spontaneous pain in mice: implications for migraine. Pain. 159(11):2306–2317

    CAS  PubMed  PubMed Central  Google Scholar 

  66. De Logu F, Landini L, Janal MN et al (2019) Migraine-provoking substances evoke periorbital allodynia in mice. J Headache Pain 20(1):18

    PubMed  PubMed Central  Google Scholar 

  67. Mason BN, Kaiser EA, Kuburas A, Loomis MCM, Latham JA, Garcia-Martinez LF, Russo AF (2017) Induction of migraine-like photophobic behavior in mice by both peripheral and central CGRP mechanisms. J Neurosci 37(1):204–216

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Cumberbatch MJ, Williamson DJ, Mason GS, Hill RG, Hargreaves RJ (1999) Dural vasodilation causes a sensitization of rat caudal trigeminal neurones in vivo that is blocked by a 5-HT1B/1D agonist. Br J Pharmacol 126:1478–1486

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Levy D, Burstein R, Strassman AM (2005) Calcitonin gene-related peptide does not excite or sensitize meningeal nociceptors: implications for the pathophysiology of migraine. Ann Neurol 58:698–705

    CAS  PubMed  Google Scholar 

  70. Bhatt DK, Ramachandran R, Christensen SL, Gupta S, Jansen-Olesen I, Olesen J (2015) CGRP infusion in unanesthetized rats increases expression of c-Fos in the nucleus tractus solitarius and caudal ventrolateral medulla, but not in the trigeminal nucleus caudalis. Cephalalgia 35:220–233

    PubMed  Google Scholar 

  71. Akerman S, Goadsby PJ (2015) Neuronal PAC1 receptors mediate delayed activation and sensitization of trigeminocervical neurons: relevance to migraine. Sci Transl Med 7(308):308ra157

    PubMed  Google Scholar 

  72. Pedersen SH, la Cour SH, Calloe K, Hauser F, Olesen J, Klaerke DA, Jansen-Olesen I (2019) PACAP-38 and PACAP (6-38) Degranulate rat meningeal mast cells via the orphan MrgB3-receptor. Front Cell Neurosci 13:114

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Costa C, Tozzi A, Rainero I, Cupini LM, Calabresi P, Ayata C, Sarchielli P (2013) Cortical spreading depression as a target for anti-migraine agents. J Headache Pain 14(1):62

    PubMed  PubMed Central  Google Scholar 

  74. Tozzi A, de Iure A, Di Filippo M et al (2012) Critical role of calcitonin gene-related peptide receptors in cortical spreading depression. Proc Natl Acad Sci U S A 109(46):18985–18990

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Jansen-Olesen I, Jorgensen L, Engel U, Edvinsson L (2013) In-depth characterization of CGRP receptors in human intracranial arteries. Eur J Pharmacol 481:206–217

    Google Scholar 

  76. Edvinsson L, Gulbenkian S, Barroso CP, Cunha e Sá M, Polak JM, Mortensen A, Jørgensen L, Jansen-Olesen I (1998) Innervation of the human middle meningeal artery:immunohistochemistry, ultrastructure, and role of endothelium for vasomotility. Peptides 19(7):1213–1225

  77. Tfelt-Hansen P, De Vries P, Saxena PR (2000) Triptans in migraine: a comparative review of pharmacology, pharmacokinetics and efficacy. Drugs 60(6):1259–1287

    CAS  PubMed  Google Scholar 

  78. Edvinsson L, Alm R, Shaw D, Rutledge RZ, Koblan KS, Longmore J, Kane SA (2002) Effect of the CGRP receptor antagonist BIBN4096BS in human cerebral, coronary and omental arteries and in SK-N-MC cells. Eur J Pharmacol 434:49–55

    CAS  PubMed  Google Scholar 

  79. Sicuteri F, Del Bene E, Poggioni M, Bonazzi A (1987) Unmasking latent dysnociception in healthy subjects. Headache 27(4):180–185

    CAS  PubMed  Google Scholar 

  80. Sances G, Tassorelli C, Pucci E, Ghiotto N, Sandrini G, Nappi G (2004) Reliability of the nitroglycerin provocative test in the diagnosis of neurovascular headaches. Cephalalgia 24(2):110–119

    CAS  PubMed  Google Scholar 

  81. Iversen HK, Olesen J, Tfelt-Hansen P (1989) Intravenous nitroglycerin as an experimental model of vascular headache. Basic characteristics. Pain 38(1):17–24

    CAS  PubMed  Google Scholar 

  82. Ashina H, Schytz HW, Ashina M (2019) CGRP in Human Models of Migraine. Handb Exp Pharmacol 255:109–120

    CAS  PubMed  Google Scholar 

  83. Ashina H, Guo S, Vollesen ALH, Ashina M (2017) PACAP38 in human models of primary headaches. J Headache Pain 18(1):110

    PubMed  PubMed Central  Google Scholar 

  84. Falkenberg K, Rønde Bjerg H, Yamani N, Olesen J (2020) Sumatriptan does not antagonize CGRP-induced symptoms in healthy volunteers. Headache 60(4):665–676

  85. Rahmann A, Wienecke T, Hansen JM, Fahrenkrug J, Olesen J, Ashina M (2008) Vasoactive intestinal peptide causes marked cephalic vasodilation, but does not induce migraine. Cephalalgia 28:226–236

    CAS  PubMed  Google Scholar 

  86. Schytz HW, Birk S, Wienecke T, Kruuse C, Olesen J, Ashina M (2009) PACAP38 induces migraine-like attacks in patients with migraine without aura. Brain 132:16–25

    PubMed  Google Scholar 

  87. Afridi S, Kaube H, Goadsby PJ (2005) Occipital activation in glyceryl trinitrate induced migraine with visual aura. J Neurol Neurosurg Psychiatry 76(8):1158–1160

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Hansen JM, Thomsen LL, Olesen J, Ashina M (2010) Coexisting typical migraine in familial hemiplegic migraine. Neurology 74(7):594–600

    PubMed  Google Scholar 

  89. Asghar MS, Hansen AE, Amin FM, van der Geest RJ, Koning Pv, Larsson HB, Olesen J, Ashina M (2011) Evidence for a vascular factor in migraine. Ann Neurol 69(4):635–645

    PubMed  Google Scholar 

  90. Christiansen I, Daugaard D, Lykke Thomsen L, Olesen J (2000) Glyceryl trinitrate induced headache in migraineurs - relation to attack frequency. Eur J Neurol 7(4):405–411

    CAS  PubMed  Google Scholar 

  91. Afridi SK, Kaube H, Goadsby PJ (2004) Glyceryl trinitrate triggers premonitory symptoms in migraineurs. Pain 110(3):675–680

    CAS  PubMed  Google Scholar 

  92. Maniyar FH, Sprenger T, Schankin C, Goadsby PJ (2014) The origin of nausea in migraine-a PET study. J Headache Pain 15(1):84

    PubMed  PubMed Central  Google Scholar 

  93. Guo S, Vollesen AL, Olesen J, Ashina M (2016) Premonitory and nonheadache symptoms induced by CGRP and PACAP38 in patients with migraine. Pain 157(12):2773–2781

    CAS  PubMed  Google Scholar 

  94. de Hoon JN, Willigers JM, Troost J, Struijker-Boudier HA, van Bortel LM (2003) Cranial and peripheral interictal vascular changes in migraine patients. Cephalalgia 23(2):96–104

    PubMed  Google Scholar 

  95. Di Clemente L, Coppola G, Magis D, Gérardy PY, Fumal A, De Pasqua V, Di Piero V, Schoenen J (2009) Nitroglycerin sensitises in healthy subjects CNS structures involved in migraine pathophysiology: evidence from a study of nociceptive blink reflexes and visual evoked potentials. Pain 144(1–2):156–161

    PubMed  Google Scholar 

  96. Perrotta A, Serrao M, Tassorelli C, Arce-Leal N, Guaschino E, Sances G, Rossi P, Bartolo M, Pierelli F, Sandrini G, Nappi G (2011) Oral nitric-oxide donor glyceryl-trinitrate induces sensitization in spinal cord pain processing in migraineurs: a double-blind, placebo-controlled, cross-over study. Eur J Pain 15(5):482–490

    CAS  PubMed  Google Scholar 

  97. Asghar MS, Becerra L, Larsson HB, Borsook D, Ashina M (2016) Calcitonin gene- related peptide modulates heat nociception in the human brain - an fmri study in healthy volunteers. PLoS One 11(3):e0150334

  98. Tvedskov JF, Thomsen LL, Iversen HK, Gibson A, Wiliams P, Olesen J (2004) The prophylactic effect of valproate on glyceryltrinitrate induced migraine. Cephalalgia 24(7):576–585

    CAS  PubMed  Google Scholar 

  99. Fullerton T, Komorowski-Swiatek D, Forrest A, Gengo FM (1999) The pharmacodynamics of sumatriptan in nitroglycerin-induced headache. J Clin Pharmacol 39(1):17–29

    CAS  PubMed  Google Scholar 

  100. Van der Schueren BJ, Blanchard R, Murphy MG, Palcza J, De Lepeleire I, Van Hecken A, Depré M, de Hoon JN (2011) The potent calcitonin gene-related peptide receptor antagonist, telcagepant, does not affect nitroglycerin-induced vasodilation in healthy men. Br J Clin Pharmacol 71(5):708–717

    PubMed  PubMed Central  Google Scholar 

  101. Petersen KA, Birk S, Lassen LH, Kruuse C, Jonassen O, Lesko L, Olesen J (2005) The CGRP-antagonist, BIBN4096BS does not affect cerebral or systemic haemodynamics in healthy volunteers. Cephalalgia 25(2):139–147

    CAS  PubMed  Google Scholar 

  102. Greco R, Demartini C, Zanaboni AM, Tumelero E, Reggiani A, Misto A, Piomelli D, Tassorelli C (2020) FAAH inhibition as a preventive treatment for migraine: A pre-clinical study. Neurobiol Dis 134:104624

    CAS  PubMed  Google Scholar 

  103. Mogil JS, Miermeister F, Seifert F, Strasburg K, Zimmermann K, Reinold H, Austin JS, Bernardini N, Chesler EJ, Hofmann HA, Hordo C, Messlinger K, Nemmani KV, Rankin AL, Ritchie J, Siegling A, Smith SB, Sotocinal S, Vater A, Lehto SG, Klussmann S, Quirion R, Michaelis M, Devor M, Reeh PW (2005) Variable sensitivity to noxious heat is mediated by differential expression of the CGRP gene. Proc Natl Acad Sci USA 102(36):12938–12943

    CAS  PubMed  Google Scholar 

  104. Chu DQ, Choy M, Foster P, Cao T, Brain SD (2000) A comparative study of the ability of calcitonin generelated peptide and adrenomedullin (13–52) to modulate microvascular but not thermal hyperalgesia responses. Br J Pharmacol 130(7):1589–1596

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Marquez de Prado B, Hammond DL, Russo AF (2009) Genetic enhancement of calcitonin gene-related Peptide-induced central sensitization to mechanical stimuli in mice. J Pain 10(9):992–1000

    CAS  PubMed  Google Scholar 

  106. Huang Y, Brodda-Jansen G, Lundeberg T, Yu LC (2004) Anti-nociceptive effects of calcitonin gene-related peptide in nucleus raphe magnus of rats: an effect attenuated by naloxone. Brain Res 873(1):54–59

    Google Scholar 

  107. Yao G, Huang Q, Wang M, Yang CL, Liu CF, Yu TM (2017) Behavioral study of a rat model of migraine induced by CGRP. Neurosci Lett 651:134–139

    CAS  PubMed  Google Scholar 

  108. Christensen SL, Petersen S, Kristensen DM, Olesen J, Munro G (2019) Targeting CGRP via receptor antagonism and antibody neutralisation in two distinct rodent models of migraine-like pain. Cephalalgia 39(14):1827–1837

    PubMed  Google Scholar 

  109. Greco R, Mangione AS, Siani F, Blandini F, Vairetti M, Nappi G, Sandrini G, Buzzi MG, Tassorelli C (2014) Effects of CGRP receptor antagonism in nitroglycerin-induced hyperalgesia. Cephalalgia 34(8):594–604

    CAS  PubMed  Google Scholar 

  110. Sundrum T, Walker CS (2018) Pituitary adenylate cyclase-activating polypeptide receptors in the trigeminovascular system: implications for migraine. Br J Pharmacol 175(21):4109–4120

    CAS  PubMed  Google Scholar 

  111. Moldovan Loomis C, Dutzar B, Ojala EW, Hendrix L, Karasek C, Scalley-Kim M, Mulligan J, Fan P, Billgren J, Rubin V, Boshaw H, Kwon G, Marzolf S, Stewart E, Jurchen D, Pederson SM, Perrino McCulloch L, Baker B, Cady RK, Latham JA, Allison D, Garcia-Martinez LF (2019) Pharmacologic Characterization of ALD1910, a Potent Humanized Monoclonal Antibody against the Pituitary Adenylate Cyclase- Activating Peptide. J Pharmacol Exp Ther 369(1):26–36

    PubMed  Google Scholar 

  112. Demartini C, Tassorelli C, Zanaboni AM, Tonsi G, Francesconi O, Nativi C, Greco R (2017) The role of the transient receptor potential ankyrin type-1 (TRPA1) channel in migraine pain: evaluation in an animal model. J Headache Pain 18(1):94

    PubMed  PubMed Central  Google Scholar 

  113. Mirrasekhian E, Nilsson JLÅ, Shionoya K, Blomgren A, Zygmunt PM, Engblom D, Högestätt ED, Blomqvist A (2018) The antipyretic effect of paracetamol occurs independent of transient receptor potential ankyrin 1-mediated hypothermia and is associated with prostaglandin inhibition in the brain. FASEB J 32(10):5751–5759

    CAS  PubMed  Google Scholar 

  114. Vila-Pueyo M (2018) Targeted 5-HT1F Therapies for Migraine. Neurotherapeutics 15(2):291–303

  115. Pertwee RG (2001) Cannabinoid receptors and pain. Prog Neurobiol 63(5):569–611

    CAS  PubMed  Google Scholar 

  116. Navratilova E, Behravesh S, Oyarzo J, Dodick DW, Banerjee P, Porreca F (2020) Ubrogepant does not induce latent sensitization in a preclinical model of medication overuse headache. Cephalalgia 40(9):892–902

    PubMed  PubMed Central  Google Scholar 

  117. Saengjaroentham C, Strother LC, Dripps I, Sultan Jabir MR, Pradhan A, Goadsby PJ, Holland PR (2020) Differential medication overuse risk of novel anti-migraine therapeutics. Brain 143(9):2681–2688

    PubMed  Google Scholar 

Download references

Funding

This manuscript was partly supported by grants from the Italian Ministry of Health to IRCCS Mondino 432 Foundation, Pavia, Italy (GR-2016-02363848, and RC2017-2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosaria Greco.

Ethics declarations

Conflict of interest

CT received honoraria for the participation to advisory boards or for oral presentations from 424 Allergan, ElectroCore, Eli-Lilly, Novartis, and Teva. CT has no ownership interest and does not 425 own stocks of any pharmaceutical company. CT serves as Chief Section Editor of Frontiers in 426 Neurology—Section Headache Medicine and Facial Pain and on the editorial board of The Journal of Headache and Pain.

The other authors have no potential conflicts of interest to declare.

Ethical approval

This article does not contain any study with human subjects.

Informed consent

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greco, R., Demartini, C., De Icco, R. et al. Migraine neuroscience: from experimental models to target therapy. Neurol Sci 41 (Suppl 2), 351–361 (2020). https://doi.org/10.1007/s10072-020-04808-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-020-04808-5

Keywords

Navigation