Skip to main content
Log in

Adapted physical activity and therapeutic exercise in late-onset Pompe disease (LOPD): a two-step rehabilitative approach

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Aerobic exercise, training to sustain motor ability, and respiratory rehabilitation may improve general functioning and quality of life (QoL) in neuromuscular disorders. Patients with late-onset Pompe disease (LOPD) typically show progressive muscle weakness, respiratory dysfunction and minor cardiac involvement. Characteristics and modalities of motor and respiratory rehabilitation in LOPD are not well defined and specific guidelines are lacking. Therefore, we evaluated the role of physical activity, therapeutic exercise, and pulmonary rehabilitation programs in order to promote an appropriate management of motor and respiratory dysfunctions and improve QoL in patients with LOPD. We propose two operational protocols: one for an adapted physical activity (APA) plan and the other for an individual rehabilitation plan, particularly focused on therapeutic exercise (TE) and respiratory rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hirschhorn R, Reuser AJ (2001) Glycogen storage disease type II: acid alpha-glucosidase (acid maltase) deficiency. In: Scriver CR, Vogelstein B, Childs B et al (eds) Metabolic and molecular bases of inherited diseases, 8th edn. McGraw-Hill Medical, New York, pp 3389–3420

    Google Scholar 

  2. Kishnani PS, Steiner RD, Bali D, Berger K, Byrne BJ, Case LE, Crowley JF, Downs S, Howell RR, Kravitz RM, Mackey J, Marsden D, Martins AM, Millington DS, Nicolino M, O’Grady G, Patterson MC, Rapoport DM, Slonim A, Spencer CT, Tifft CJ, Watson MS (2006) Pompe disease diagnosis and management guideline. Genet Med 8(5):267–288. https://doi.org/10.1097/01.gim.0000218152.87434.f3

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wens SC, van Gelder CM, Kruijshaar ME, de Vries JM, van der Beek NA, Reuser AJ, van Doorn PA, van der Ploeg AT, Brusse E (2013) Phenotypical variation within 22 families with Pompe disease. Orphanet J Rare Dis 8:182. https://doi.org/10.1186/1750-1172-8-182

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lim JA, Li L, Raben N (2014) Pompe disease: from pathophysiology to therapy and back again. Front Aging Neurosci 6:177. https://doi.org/10.3389/fnagi.2014.00177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. De Filippi P, Saeidi K, Ravaglia S, Dardis A, Angelini C, Mongini T, Morandi L, Moggio M, Di Muzio A, Filosto M, Bembi B, Giannini F, Marrosu G, Rigoldi M, Tonin P, Servidei S, Siciliano G, Carlucci A, Scotti C, Comelli M, Toscano A, Danesino C (2014) Genotype-phenotype correlation in Pompe disease, a step forward. Orphanet J Rare Dis 9:102. https://doi.org/10.1186/s13023-014-0102-z

    Article  PubMed  PubMed Central  Google Scholar 

  6. Angelini C, Semplicini C, Ravaglia S, Bembi B, Servidei S, Pegoraro E, Moggio M, Filosto M, Sette E, Crescimanno G, Tonin P, Parini R, Morandi L, Marrosu G, Greco G, Musumeci O, Di Iorio G, Siciliano G, Donati MA, Carubbi F, Ermani M, Mongini T, Toscano A, Italian GG (2012) Observational clinical study in juvenile-adult glycogenosis type 2 patients undergoing enzyme replacement therapy for up to 4 years. J Neurol 259(5):952–958. https://doi.org/10.1007/s00415-011-6293-5

    Article  CAS  PubMed  Google Scholar 

  7. Reuser AJ, Van Den Hout H, Bijvoet AG, Kroos MA, Verbeet MP, Van Der Ploeg AT (2002) Enzyme therapy for Pompe disease: from science to industrial enterprise. Eur J Pediatr 161(Suppl 1):S106–S111. https://doi.org/10.1007/s00431-002-1015-8

    Article  CAS  PubMed  Google Scholar 

  8. Vita G, Vita GL, Musumeci O, Rodolico C, Messina S (2019) Genetic neuromuscular disorders: living the era of a therapeutic revolution. Part 2: diseases of motor neuron and skeletal muscle. Neurol Sci 40(4):671–681. https://doi.org/10.1007/s10072-019-03764-z

    Article  PubMed  Google Scholar 

  9. van der Ploeg AT, Reuser AJ (2008) Pompe’s disease. Lancet 372(9646):1342–1353. https://doi.org/10.1016/S0140-6736(08)61555-X

    Article  CAS  PubMed  Google Scholar 

  10. Abresch RT, Han JJ, Carter GT (2009) Rehabilitation management of neuromuscular disease: the role of exercise training. J Clin Neuromuscul Dis 11(1):7–21. https://doi.org/10.1097/CND.0b013e3181a8d36b

    Article  PubMed  Google Scholar 

  11. Iolascon G, Vitacca M, Carraro E, Chisari C, Fiore P, Messina S, Mongini TEG, Sansone VA, Toscano A, Siciliano G (2018) The role of rehabilitation in the management of late-onset Pompe disease: a narrative review of the level of evidence. Acta Myol 37(4):241–251

    PubMed  PubMed Central  Google Scholar 

  12. Alejaldre A, Diaz-Manera J, Ravaglia S, Tibaldi EC, D’Amore F, Moris G, Muelas N, Vilchez JJ, Garcia-Medina A, Uson M, Martinez Garcia FA, Illa I, Pichiecchio A (2012) Trunk muscle involvement in late-onset Pompe disease: study of thirty patients. Neuromuscul Disord 22(Suppl 2):S148–S154. https://doi.org/10.1016/j.nmd.2012.05.011

    Article  PubMed  Google Scholar 

  13. Grassi B, Rossiter HB, Zoladz JA (2015) Skeletal muscle fatigue and decreased efficiency: two sides of the same coin? Exerc Sport Sci Rev 43(2):75–83. https://doi.org/10.1249/JES.0000000000000043

    Article  PubMed  Google Scholar 

  14. Muller-Felber W, Horvath R, Gempel K, Podskarbi T, Shin Y, Pongratz D, Walter MC, Baethmann M, Schlotter-Weigel B, Lochmuller H, Schoser B (2007) Late onset Pompe disease: clinical and neurophysiological spectrum of 38 patients including long-term follow-up in 18 patients. Neuromuscul Disord 17(9–10):698–706. https://doi.org/10.1016/j.nmd.2007.06.002

    Article  PubMed  Google Scholar 

  15. Gaeta M, Barca E, Ruggeri P, Minutoli F, Rodolico C, Mazziotti S, Milardi D, Musumeci O, Toscano A (2013) Late-onset Pompe disease (LOPD): correlations between respiratory muscles CT and MRI features and pulmonary function. Mol Genet Metab 110(3):290–296. https://doi.org/10.1016/j.ymgme.2013.06.023

    Article  CAS  PubMed  Google Scholar 

  16. Sechi A, Salvadego D, Da Ponte A, Bertin N, Dardis A, Cattarossi S, Devigili G, Reccardini F, Bembi B, Grassi B (2017) Investigation on acute effects of enzyme replacement therapy and influence of clinical severity on physiological variables related to exercise tolerance in patients with late onset Pompe disease. Neuromuscul Disord 27(6):542–549. https://doi.org/10.1016/j.nmd.2017.03.002

    Article  PubMed  Google Scholar 

  17. van den Berg LE, Favejee MM, Wens SC, Kruijshaar ME, Praet SF, Reuser AJ, Bussmann JB, van Doorn PA, van der Ploeg AT (2015) Safety and efficacy of exercise training in adults with Pompe disease: evaluation of endurance, muscle strength and core stability before and after a 12 week training program. Orphanet J Rare Dis 10:87. https://doi.org/10.1186/s13023-015-0303-0

    Article  PubMed  PubMed Central  Google Scholar 

  18. Borg G (1970) Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med 2(2):92–98

    CAS  PubMed  Google Scholar 

  19. Crescimanno G, Modica R, Lo Mauro R, Musumeci O, Toscano A, Marrone O (2015) Role of the cardio-pulmonary exercise test and six-minute walking test in the evaluation of exercise performance in patients with late-onset Pompe disease. Neuromuscul Disord 25(7):542–547. https://doi.org/10.1016/j.nmd.2015.03.010

    Article  CAS  PubMed  Google Scholar 

  20. Grassi B, Marzorati M, Lanfranconi F, Ferri A, Longaretti M, Stucchi A, Vago P, Marconi C, Morandi L (2007) Impaired oxygen extraction in metabolic myopathies: detection and quantification by near-infrared spectroscopy. Muscle Nerve 35(4):510–520. https://doi.org/10.1002/mus.20708

    Article  CAS  PubMed  Google Scholar 

  21. Grassi B, Porcelli S, Marzorati M, Lanfranconi F, Vago P, Marconi C, Morandi L (2009) Metabolic myopathies: functional evaluation by analysis of oxygen uptake kinetics. Med Sci Sports Exerc 41(12):2120–2127. https://doi.org/10.1249/MSS.0b013e3181aae96b

    Article  PubMed  Google Scholar 

  22. Preisler N, Laforet P, Madsen KL, Hansen RS, Lukacs Z, Orngreen MC, Lacour A, Vissing J (2012) Fat and carbohydrate metabolism during exercise in late-onset Pompe disease. Mol Genet Metab 107(3):462–468. https://doi.org/10.1016/j.ymgme.2012.08.019

    Article  CAS  PubMed  Google Scholar 

  23. Wasserman K, Hansen JE, Sue DY, Casaburi R, Whipp BJ (1999) Principles of exercise testing. Lippincott, Williams and Wilkins

    Google Scholar 

  24. Angelini C, Semplicini C, Ravaglia S, Moggio M, Comi GP, Musumeci O, Pegoraro E, Tonin P, Filosto M, Servidei S, Morandi L, Crescimanno G, Marrosu G, Siciliano G, Mongini T, Toscano A, Italian Group on G (2012) New motor outcome function measures in evaluation of late-onset Pompe disease before and after enzyme replacement therapy. Muscle Nerve 45(6):831–834. https://doi.org/10.1002/mus.23340

    Article  PubMed  Google Scholar 

  25. Schoser B, Laforet P, Kruijshaar ME, Toscano A, van Doorn PA, van der Ploeg AT (2015) 208th ENMC International Workshop: formation of a European network to develop a European data sharing model and treatment guidelines for Pompe disease. Naarden, The Netherlands, 26-28 September 2014. Neuromuscul Disord 25(8):674–678. https://doi.org/10.1016/j.nmd.2015.04.006

    Article  PubMed  Google Scholar 

  26. Fisk JD, Ritvo PG, Ross L, Haase DA, Marrie TJ, Schlech WF (1994) Measuring the functional impact of fatigue: initial validation of the fatigue impact scale. Clin Infect Dis 18(Suppl 1):S79–S83. https://doi.org/10.1093/clinids/18.supplement_1.s79

    Article  PubMed  Google Scholar 

  27. Larson RD (2013) Psychometric properties of the modified fatigue impact scale. Int J MS Care 15(1):15–20. https://doi.org/10.7224/1537-2073.2012-019

    Article  PubMed  PubMed Central  Google Scholar 

  28. Keith RA, Granger CV, Hamilton BB, Sherwin FS (1987) The functional independence measure: a new tool for rehabilitation. Adv Clin Rehabil 1:6–18

    CAS  PubMed  Google Scholar 

  29. Mills R, Young C, Nicholas R, Pallant J, Tennant A (2009) Rasch analysis of the fatigue severity scale in multiple sclerosis. Mult Scler 15(1):81–87. https://doi.org/10.1177/1352458508096215

    Article  PubMed  Google Scholar 

  30. Ottonello M, Pellicciari L, Giordano A, Foti C (2016) Rasch analysis of the fatigue severity scale in Italian subjects with multiple sclerosis. J Rehabil Med 48(7):597–603. https://doi.org/10.2340/16501977-2116

    Article  PubMed  Google Scholar 

  31. Siciliano M, Chiorri C, De Micco R, Russo A, Tedeschi G, Trojano L, Tessitore A (2019) Fatigue in Parkinson’s disease: Italian validation of the Parkinson fatigue scale and the fatigue severity scale using a Rasch analysis approach. Parkinsonism Relat Disord 65:105–110. https://doi.org/10.1016/j.parkreldis.2019.05.028

    Article  CAS  PubMed  Google Scholar 

  32. Rooney S, McFadyen DA, Wood DL, Moffat DF, Paul PL (2019) Minimally important difference of the fatigue severity scale and modified fatigue impact scale in people with multiple sclerosis. Mult Scler Relat Disord 35:158–163. https://doi.org/10.1016/j.msard.2019.07.028

    Article  PubMed  Google Scholar 

  33. Schiehser DM, Ayers CR, Liu L, Lessig S, Song DS, Filoteo JV (2013) Validation of the modified fatigue impact scale in Parkinson’s disease. Parkinsonism Relat Disord 19(3):335–338. https://doi.org/10.1016/j.parkreldis.2012.11.013

    Article  PubMed  Google Scholar 

  34. Kluger BM, Garimella S, Garvan C (2017) Minimal clinically important difference of the modified fatigue impact scale in Parkinson’s disease. Parkinsonism Relat Disord 43:101–104. https://doi.org/10.1016/j.parkreldis.2017.07.016

    Article  PubMed  Google Scholar 

  35. World Health Organization Physical activity. http://www.who.int/ncds/prevention/physical-activity/introduction/en/. Accessed July 23 2018

  36. Patel H, Alkhawam H, Madanieh R, Shah N, Kosmas CE, Vittorio TJ (2017) Aerobic vs anaerobic exercise training effects on the cardiovascular system. World J Cardiol 9(2):134–138. https://doi.org/10.4330/wjc.v9.i2.134

    Article  PubMed  PubMed Central  Google Scholar 

  37. Aagaard P, Andersen JL, Dyhre-Poulsen P, Leffers AM, Wagner A, Magnusson SP, Halkjaer-Kristensen J, Simonsen EB (2001) A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture. J Physiol 534(Pt. 2):613–623. https://doi.org/10.1111/j.1469-7793.2001.t01-1-00613.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kobayashi YM, Rader EP, Crawford RW, Iyengar NK, Thedens DR, Faulkner JA, Parikh SV, Weiss RM, Chamberlain JS, Moore SA, Campbell KP (2008) Sarcolemma-localized nNOS is required to maintain activity after mild exercise. Nature 456(7221):511–515. https://doi.org/10.1038/nature07414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Abresch RT, Carter GT, Han JJ, McDonald CM (2012) Exercise in neuromuscular diseases. Phys Med Rehabil Clin N Am 23(3):653–673. https://doi.org/10.1016/j.pmr.2012.06.001

    Article  PubMed  Google Scholar 

  40. Panosyan FB, Fitzpatrick MF, Bolton CF (2014) Late onset Pompe disease mimicking rigid spine syndrome. Can J Neurol Sci 41(2):286–289

    Article  Google Scholar 

  41. Magrinelli F, Tosi M, Tonin P (2017) Teaching video neuroimages: bent spine syndrome as an early presentation of late-onset Pompe disease. Neurology 89(3):e21–e22. https://doi.org/10.1212/WNL.0000000000004119

    Article  PubMed  Google Scholar 

  42. Harvey LA, Katalinic OM, Herbert RD, Moseley AM, Lannin NA, Schurr K (2017) Stretch for the treatment and prevention of contractures. Cochrane Database Syst Rev 1:CD007455. https://doi.org/10.1002/14651858.CD007455.pub3

    Article  PubMed  Google Scholar 

  43. Case LE, Hanna R, Frush DP, Krishnamurthy V, DeArmey S, Mackey J, Boney A, Morgan C, Corzo D, Bouchard S, Weber TJ, Chen YT, Kishnani PS (2007) Fractures in children with Pompe disease: a potential long-term complication. Pediatr Radiol 37(5):437–445. https://doi.org/10.1007/s00247-007-0428-y

    Article  PubMed  Google Scholar 

  44. Hyde SA, FlLytrup I, Glent S, Kroksmark AK, Salling B, Steffensen BF, Werlauff U, Erlandsen M (2000) A randomized comparative study of two methods for controlling tendon Achilles contracture in Duchenne muscular dystrophy. Neuromuscul Disord 10(4–5):257–263

    Article  CAS  Google Scholar 

  45. Stuberg WA (2000) Muscular dystrophy and spinal muscular atrophy. In: Campbell SK, Vander Linden DW, Palisano RJ (eds) Physical therapy for children. W. B. Saunders Company, Philadelphia, pp 339–368

    Google Scholar 

  46. Rapin A, Etosse A, Tambosco L, Nicomette J, Percebois-Macadre L, Mouret P, Boyer FC (2013) Aerobic capacities and exercise tolerance in neuromuscular diseases: a descriptive study. Ann Phys Rehabil Med 56(6):420–433. https://doi.org/10.1016/j.rehab.2013.04.004

    Article  CAS  PubMed  Google Scholar 

  47. van der Ploeg RJ, Oosterhuis HJ, Reuvekamp J (1984) Measuring muscle strength. J Neurol 231(4):200–203

    Article  Google Scholar 

  48. Lachmann R, Schoser B (2013) The clinical relevance of outcomes used in late-onset Pompe disease: can we do better? Orphanet J Rare Dis 8:160. https://doi.org/10.1186/1750-1172-8-160

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hagemans ML, van Schie SP, Janssens AC, van Doorn PA, Reuser AJ, van der Ploeg AT (2007) Fatigue: an important feature of late-onset Pompe disease. J Neurol 254(7):941–945. https://doi.org/10.1007/s00415-006-0434-2

    Article  PubMed  PubMed Central  Google Scholar 

  50. Montagnese F, Thiele S, Wenninger S, Schoser B (2016) Long-term whole-body vibration training in two late-onset Pompe disease patients. Neurol Sci 37(8):1357–1360. https://doi.org/10.1007/s10072-016-2612-z

    Article  PubMed  Google Scholar 

  51. Boentert M, Prigent H, Vardi K, Jones HN, Mellies U, Simonds AK, Wenninger S, Barrot Cortes E, Confalonieri M (2016) Practical recommendations for diagnosis and management of respiratory muscle weakness in late-onset Pompe disease. Int J Mol Sci 17(10). https://doi.org/10.3390/ijms17101735

  52. Vitacca M, Grandi M, Sturani C, Galavotti V, Guffanti E, Colombo D, Fiorenza D, Aiolfi S, Patruno V, Fanfulla F, Nava S, Ceriana P, Vitacca E, Felisari G, Amaducci S, Banfi P, Rossi G (2009) Valutazione e trattamento delle malattie neuromuscolari e malattia del motoneurone in ambito pneumologico: position paper della Sezione Regionale AIPO Lombardia. Rassegna di Patologia dell’Apparato Respiratorio 24(2):64–69

    Google Scholar 

  53. Hill N, Liesching T, Kwok H (2004) Indications for non-invasive ventilation. In: Slutsky ASBL (ed) Update in intensive care medicine: mechanical ventilation. Springer, Berlin, pp 171–188

    Google Scholar 

  54. Shneerson JM, Simonds AK (2002) Noninvasive ventilation for chest wall and neuromuscular disorders. Eur Respir J 20(2):480–487

    Article  CAS  Google Scholar 

  55. Aslan GK, Huseyinsinoglu BE, Oflazer P, Gurses N, Kiyan E (2016) Inspiratory muscle training in late-onset Pompe disease: the effects on pulmonary function tests, quality of life, and sleep quality. Lung 194(4):555–561. https://doi.org/10.1007/s00408-016-9881-4

    Article  PubMed  Google Scholar 

  56. Jevnikar M, Kodric M, Cantarutti F, Cifaldi R, Longo C, Della Porta R, Bembi B, Confalonieri M (2015) Respiratory muscle training with enzyme replacement therapy improves muscle strength in late - onset Pompe disease. Mol Genet Metab Rep 5:67–71. https://doi.org/10.1016/j.ymgmr.2015.09.007

    Article  CAS  PubMed  Google Scholar 

  57. Jones HN, Crisp KD, Robey RR, Case LE, Kravitz RM, Kishnani PS (2016) Respiratory muscle training (RMT) in late-onset Pompe disease (LOPD): effects of training and detraining. Mol Genet Metab 117(2):120–128. https://doi.org/10.1016/j.ymgme.2015.09.003

    Article  CAS  PubMed  Google Scholar 

  58. Ambrosino N, Confalonieri M, Crescimanno G, Vianello A, Vitacca M (2013) The role of respiratory management of Pompe disease. Respir Med 107(8):1124–1132. https://doi.org/10.1016/j.rmed.2013.03.004

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Catherine Rees and Toni Dando of Springer Healthcare Communications for editing the manuscript before submission. This project was realized with the unconditional support provided by Sanofi Genzyme Italy.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

GI provided substantial contribution to the conception and to the design of the paper, drafting the work, revising it critically for intellectual content, and formulating protocols; AM contributed to database research, and to formulation of protocols; SM contributed to database research. All authors read, revised and approved drafts, and approved the final version of the manuscript before submission.

Corresponding author

Correspondence to Giovanni Iolascon.

Ethics declarations

Conflict of interest

GI, MV, EC, PF, SM, and AM have no conflicts of interest to declare. CC has served as an expert in a scientific meeting for Sanofi Genzyme.TM has served as an expert in scientific boards for Sanofi Genzyme. VAS has served as scientific expert on advisory boards for Biogen, Avexis, Sarepta, Santhera, and PTC Therapeutics and declares no conflict of interest for this project. AT has received some reimbursement from Sanofi Genzyme for assisting in teaching courses and for being a member of the Global Pompe Registry committee. GS has served as scientific expert and supervisor for a study grant on Pompe disease supported by Sanofi in 2018 and in the current year.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Endorsed by the AIM (Italian Association of Myology), AIPO (Italian Association of Hospital Pulmonologists), SIRN (Italian Society of Neurorehabilitation), and the SIMFER (Italian Society of Physical Medicine and Rehabilitation)

Highlights for adapted physical activity (APA) and exercise in LOPD patients

• Each patient should perform an APA program and, where indicated, a TE program based on their clinical and functional conditions.

• A personalized TE program must include progressive strength training performed against both static and dynamic resistance forces and including concentric and eccentric contractions.

• In particular conditions, such as RSS or BSS, patients should be included in a contracture prevention program based on flexibility exercises (stretching) and, where necessary, using orthoses.

Highlights for APA in LOPD patients

• In the initial phases of LOPD, when the disease burden is still limited (absence of severe impairments or ADL limitations), an APA program should be suggested to avoid a sedentary lifestyle and to improve mental and physical well-being.

• APA ranges from ADL (which the subject performs independently) to a personalized training program (in a group or individually), supervised by professionals in a suitable sports setting (gym).

• Daily and/or recreational activities or sports should be done 3 to 5 times a week, initially advocating a moderate-intensity activity regimen, and accumulating at least 30 min per day.

Highlights for individual rehabilitation plan (IRP) in LOPD patients

• An IRP is advised in patients with skeletal muscle impairments resulting in significant functional limitation.

• The IRP is formulated by a rehabilitation team, which identifies the desired outcomes and defines how these might be achieved through individually tailored rehabilitation programs, according to the ICF-based approach.

• The TE protocol aims to improve skeletal muscle performance (muscle strength and core stability) and cardiorespiratory fitness, while avoiding excessive workload, pain, and fatigue.

• The TE protocol should be performed between two and five times a week, with sessions that last from 20 to 60 min, depending on the patient’s clinical and functional condition, and their compliance.

• The cornerstones of respiratory rehabilitative intervention are the treatment of nocturnal hypoventilation and the management of secretions.

• Assistance in the inspiratory phase can be achieved by means of hyperinsufflation, air stacking, selective expiratory assistance, and global cough assistance with air stacking and insufflation/exsufflation.

• NIV increases survival, prevents nocturnal hypoventilation, improves nighttime saturation, sleep-related respiratory disorders, gas exchange, and QoL, avoids or postpones tracheotomy, and relieves symptoms.

• Respiratory muscle training improves strength of inspiratory muscles.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iolascon, G., Vitacca, M., Carraro, E. et al. Adapted physical activity and therapeutic exercise in late-onset Pompe disease (LOPD): a two-step rehabilitative approach. Neurol Sci 41, 859–868 (2020). https://doi.org/10.1007/s10072-019-04178-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-019-04178-7

Keywords

Navigation