Skip to main content
Log in

Association of variants in microRNA with Parkinson’s disease in Chinese Han population

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are short RNAs regulating gene expression and may participate in pathogenesis of various diseases. Recently, rs897984:T > C in miR-4519 and rs11651671:A > G in miR-548at-5p have been reported that associate with Parkinson’s disease (PD). However, to our knowledge, there is no further evidence regarding this finding. Herein, we performed a case-control study of 546 PD patients and 550 healthy controls to genotype the two single-nucleotide polymorphisms (SNPs) to assess their associations with PD. The results showed that rs897984 (OR value for C allele = 0.851, 95% CI 0.603–1.201, P = 0.358) in miR-4519 and rs11651671 (OR value for G allele = 1.405, 95% CI 0.927–2.131, P = 0.107) in miR-548at-5p were not associated to PD, which suggest they may not contribute to the gene susceptibility of PD at least in Chinese Han population. More evidences from larger sample size and other ethnic populations are still needed to illustrate the association between miRNAs and PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hammond SM (2015) An overview of microRNAs. Adv Drug Deliv Rev 87:3–14. https://doi.org/10.1016/j.addr.2015.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. García-López J, Brieño-Enríquez MA, Del MJ (2013) MicroRNA biogenesis and variability. Biomol Concepts 4(4):367–380. https://doi.org/10.1515/bmc-2013-0015

    Article  PubMed  Google Scholar 

  3. Liu S, Zhang Y, Bian H, Li X (2016) Gene expression profiling predicts pathways and genes associated with Parkinson’s disease. Neurol Sci 37(1):73–79. https://doi.org/10.1007/s10072-015-2360-5

    Article  PubMed  Google Scholar 

  4. Pickrell AM, Youle RJ (2015) The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 85(2):257–273. https://doi.org/10.1016/j.neuron.2014.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Singleton AB, Farrer MJ, Bonifati V (2013) The genetics of Parkinson’s disease: progress and therapeutic implications. Mov Disord 28(1):14–23. https://doi.org/10.1002/mds.25249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barkhuizen M, Anderson DG, Grobler AF (2016) Advances in GBA-associated Parkinson’s disease—pathology, presentation and therapies. Neurochem Int 93:6–25. https://doi.org/10.1016/j.neuint.2015.12.004

    Article  CAS  PubMed  Google Scholar 

  7. Shahmohammadibeni N, Rahimi-Aliabadi S, Jamshidi J, Emamalizadeh B, Shahmohammadibeni HA, Zare Bidoki A, Akhavan-Niaki H, Eftekhari H, Abdollahi S, Shekari Khaniani M, Shahmohammadibeni M, Fazeli A, Motallebi M, Taghavi S, Ahmadifard A, Shafiei Zarneh AE, Andarva M, Dadkhah T, Khademi E, Alehabib E, Rahimi M, Tafakhori A, Atakhorrami M, Darvish H (2016) The analysis of association between SNCA, HUSEYO and CSMD1 gene variants and Parkinson's disease in Iranian population. Neurol Sci 37(5):731–736. https://doi.org/10.1007/s10072-015-2420-x

    Article  PubMed  Google Scholar 

  8. Harraz MM, Dawson TM, Dawson VL (2011) MicroRNAs in Parkinson’s disease. J Chem Neuroanat 42(2):127–130. https://doi.org/10.1016/j.jchemneu.2011.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Khoo SK, Petillo D, Kang UJ, Resau JH, Berryhill B, Linder J, Forsgren L, Neuman LA, Tan AC (2012) Plasma-based circulating MicroRNA biomarkers for Parkinson’s disease. J Parkinsons Dis 2(4):321–331. https://doi.org/10.3233/JPD-012144

    CAS  PubMed  Google Scholar 

  10. Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, Hannon G, Abeliovich A (2007) A MicroRNA feedback circuit in midbrain dopamine neurons. Science 317(5842):1220–1224. https://doi.org/10.1126/science.1140481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ghanbari M, Darweesh SK, de Looper HW et al (2016) Genetic variants in MicroRNAs and their binding sites are associated with the risk of Parkinson disease. Hum Mutat 37(3):292–300. https://doi.org/10.1002/humu.22943

    Article  CAS  PubMed  Google Scholar 

  12. Flores O, Kennedy EM, Skalsky RL, Cullen BR (2014) Differential RISC association of endogenous human microRNAs predicts their inhibitory potential. Nucleic Acids Res 42(7):4629–4639. https://doi.org/10.1093/nar/gkt1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kobayashi H, Tomari Y (2016) RISC assembly: coordination between small RNAs and Argonaute proteins. Biochim Biophys Acta 1859(1):71–81. https://doi.org/10.1016/j.bbagrm.2015.08.007

    Article  CAS  PubMed  Google Scholar 

  14. Jeker LT, Bluestone JA (2013) MicroRNA regulation of T-cell differentiation and function. Immunol Rev 253(1):65–81. https://doi.org/10.1111/imr.12061

    Article  PubMed  PubMed Central  Google Scholar 

  15. YF X, Mao YP, Li YQ et al (2015) MicroRNA-93 promotes cell growth and invasion in nasopharyngeal carcinoma by targeting disabled homolog-2. Cancer Lett 363(2):146–155

    Article  Google Scholar 

  16. Lenkala D, Gamazon ER, LaCroix B, Im HK, Huang RS (2015) MicroRNA biogenesis and cellular proliferation. Transl Res 166(2):145–151. https://doi.org/10.1016/j.trsl.2015.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen Y, Fu LL, Wen X, Liu B, Huang J, Wang JH, Wei YQ (2014) Oncogenic and tumor suppressive roles of microRNAs in apoptosis and autophagy. Apoptosis 19(8):1177–1189. https://doi.org/10.1007/s10495-014-0999-7

    Article  CAS  PubMed  Google Scholar 

  18. Yu W, Kawasaki F, Ordway RW (2011) Activity-dependent interactions of NSF and SNAP at living synapses. Mol Cell Neurosci 47(1):19–27. https://doi.org/10.1016/j.mcn.2011.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu H, Peng J, Gao J, Zheng F, Tie C (2015) Glutathione S-transferase T1 and M1 null genotypes and Parkinson’s disease risk: evidence from an updated meta-analysis. Neurol Sci 36(9):1559–1565. https://doi.org/10.1007/s10072-015-2159-4

    Article  PubMed  Google Scholar 

  20. Zhang Y, Sun QY, Yu RH, Guo JF, Tang BS, Yan XX (2015) The contribution of GIGYF2 to Parkinson’s disease: a meta-analysis. Neurol Sci 36(11):2073–2079. https://doi.org/10.1007/s10072-015-2316-9

    Article  PubMed  Google Scholar 

  21. Huo Q, Li T, Zhao P, Wang L (2015) Association between rs6812193 polymorphism and sporadic Parkinson’s disease susceptibility. Neurol Sci 36(8):1479–1481. https://doi.org/10.1007/s10072-015-2186-1

    Article  PubMed  Google Scholar 

  22. Xu XM, Dong MX, Feng X, et al. (2017) Decreased serum proNGF concentration in patients with Parkinson’s disease. Neurol Sci

  23. Park JS, Park D, Ko PW, Kang K, Lee HW (2017) Serum methylmalonic acid correlates with neuropathic pain in idiopathic Parkinson’s disease. Neurol Sci

  24. Ataç UC, Gökçe ÇB, Ünal AHA, İnan LE, Yoldaş TK (2017) Comparison of neutrophil-lymphocyte ratio (NLR) in Parkinson’s disease subtypes. Neurol Sci 38(2):287–293. https://doi.org/10.1007/s10072-016-2758-8

    Article  Google Scholar 

  25. Gökçe ÇB, Yurtdaş M, Keskin GS et al (2017) Serum glutathione peroxidase, xanthine oxidase, and superoxide dismutase activities and malondialdehyde levels in patients with Parkinson’s disease. Neurol Sci 38(3):425–431. https://doi.org/10.1007/s10072-016-2782-8

    Article  Google Scholar 

  26. Sun XY, Wang L, Cheng L, Li NN, Lu ZJ, Li JY, Peng R (2017) Genetic analysis of FGF20 in Chinese patients with Parkinson’s disease. Neurol Sci 38(5):887–891. https://doi.org/10.1007/s10072-017-2868-y

    Article  PubMed  Google Scholar 

  27. Ragno M, Sanguigni S, Manca A, Pianese L, Paci C, Berbellini A, Cozzolino V, Gobbato R, Peluso S, de Michele G (2016) Parkinsonism in a pair of monozygotic CADASIL twins sharing the R1006C mutation: a transcranial sonography study. Neurol Sci 37(6):875–881. https://doi.org/10.1007/s10072-016-2497-x

    Article  PubMed  Google Scholar 

  28. Vieru E, Köksal A, Mutluay B, Dirican AC, Altunkaynak Y, Baybas S (2016) The relation of serum uric acid levels with L-Dopa treatment and progression in patients with Parkinson’s disease. Neurol Sci 37(5):743–747. https://doi.org/10.1007/s10072-015-2471-z

    Article  PubMed  Google Scholar 

  29. Ou R, Cao B, Wei Q, Hou Y, Xu Y, Song W, Zhao B, Shang H (2017) Serum uric acid levels and freezing of gait in Parkinson’s disease. Neurol Sci 38(6):955–960. https://doi.org/10.1007/s10072-017-2871-3

    Article  PubMed  Google Scholar 

  30. Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386(9996):896–912. https://doi.org/10.1016/S0140-6736(14)61393-3

    Article  CAS  PubMed  Google Scholar 

  31. Liu Y, Chen YY, Liu H, Yao CJ, Zhu XX, Chen DJ, Yang J, Lu YJ, Cao JY (2015) Association between ubiquitin carboxy-terminal hydrolase-L1 S18Y variant and risk of Parkinson’s disease: the impact of ethnicity and onset age. Neurol Sci 36(2):179–188. https://doi.org/10.1007/s10072-014-1987-y

    Article  CAS  PubMed  Google Scholar 

  32. Quinlan S et al (2017) MicroRNAs in neurodegenerative diseases. Int Rev Cell Mol Biol 334:309–343. https://doi.org/10.1016/bs.ircmb.2017.04.002

    Article  PubMed  Google Scholar 

  33. Toivonen JM, Manzano R, Oliván S, Zaragoza P, García-Redondo A, Osta R (2014) MicroRNA-206: a potential circulating biomarker candidate for amyotrophic lateral sclerosis. PLoS One 9(2):e89065. https://doi.org/10.1371/journal.pone.0089065

    Article  PubMed  PubMed Central  Google Scholar 

  34. Banzhaf-Strathmann J, Benito E, May S, Arzberger T, Tahirovic S, Kretzschmar H, Fischer A, Edbauer D (2014) MicroRNA-125b induces tau hyperphosphorylation and cognitive deficits in Alzheimer’s disease. EMBO J 33(15):1667–1680. 10.15252/embj.201387576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fenoglio C et al (2011) Expression and genetic analysis of miRNAs involved in CD4+ cell activation in patients with multiple sclerosis. Neurosci Lett 17(504):9–12

    Article  Google Scholar 

  36. Hoss AG, Lagomarsino VN, Frank S, Hadzi TC, Myers RH, Latourelle JC (2015) Study of plasma-derived miRNAs mimic differences in Huntington’s disease brain. Mov Disord 30(14):1961–1964. https://doi.org/10.1002/mds.26457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li N, Pan X, Zhang J, Ma A, Yang S, Ma J, Xie A (2017) Plasma levels of miR-137 and miR-124 are associated with Parkinson’s disease but not with Parkinson’s disease with depression. Neurol Sci 38(5):761–767. https://doi.org/10.1007/s10072-017-2841-9

    Article  PubMed  Google Scholar 

  38. Uğurel E, Şehitoğlu E, Tüzün E, Kürtüncü M, Çoban A, Vural B (2016) Increased complexin-1 and decreased miR-185 expression levels in Behçet’s disease with and without neurological involvement. Neurol Sci 37(3):411–416. https://doi.org/10.1007/s10072-015-2419-3

    Article  PubMed  Google Scholar 

  39. Hajjari SN, Mehdizadeh M, Sadigh-Eteghad S, Shanehbandi D, Teimourian S, Baradaran B (2017) Secretases-related miRNAs in Alzheimer’s disease: new approach for biomarker discovery. Neurol Sci

  40. Karnati HK, Panigrahi MK, Gutti RK, Greig NH, Tamargo IA (2015) miRNAs: key players in neurodegenerative disorders and epilepsy. J Alzheimers Dis 48(3):563–580. https://doi.org/10.3233/JAD-150395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jin F, Xing J (2017) Circulating pro-angiogenic and anti-angiogenic microRNA expressions in patients with acute ischemic stroke and their association with disease severity. Neurol Sci

  42. Qiu L, Tan EK, Zeng L (2015) microRNAs and neurodegenerative diseases. Adv Exp Med Biol 888:85–105. https://doi.org/10.1007/978-3-319-22671-2_6

    Article  PubMed  Google Scholar 

  43. Wang L, Hu W, Wang J, Fang F, Cheng G, Jiang Y, Xiao H, Wan Q (2017) Impact of serum uric acid, albumin and their interaction on Parkinson’s disease. Neurol Sci 38(2):331–336. https://doi.org/10.1007/s10072-016-2738-z

    Article  PubMed  Google Scholar 

  44. Abushouk AI, MWA E, Magdy M et al (2017) Evidence for association between hepatitis C virus and Parkinson’s disease. Neurol Sci 38(11):1913–1920. https://doi.org/10.1007/s10072-017-3077-4

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge all the participants including both stroke patients and healthy controls.

Funding

This work was supported by National Key R&D Program of China [2017YFA0105000], the National Natural Science Foundation of China to Dr. Yuming Xu [grant numbers 81530037, 81471158], the National Natural Science Foundation of China to Dr. Changhe Shi [grant number 81771290], and National Natural Science Foundation of China to Dr. Han Liu [grant number 81701247].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changhe Shi or Yuming Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Liu, H., Cheng, Y. et al. Association of variants in microRNA with Parkinson’s disease in Chinese Han population. Neurol Sci 39, 353–357 (2018). https://doi.org/10.1007/s10072-017-3210-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-017-3210-4

Keywords

Navigation