Skip to main content

Advertisement

Log in

Thiol/disulfide homeostasis as a novel indicator of oxidative stress in children with simple febrile seizures

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Simple febrile seizures are generally benign, but during the seizure, elevated levels of glutamate and high levels of oxygen use due to the high metabolic brain activity result in oxidative stress. However, the relationship between febrile seizures and oxidative stress remains unclear. In this study, we investigated thiol/disulfide homeostasis as a new oxidative stress parameter in patients with simple febrile seizures. This study was performed between February 2016 and May 2016 at the Pediatric Emergency Unit. The study population consisted of 40 patients with a diagnosis of simple febrile seizure and 30 control participants aged 8–59 months. Total thiol, native thiol and disulfide levels, disulfide/native thiol, disulfide/total thiol, and native thiol/total thiol ratios were used as thiol/disulfide homeostasis parameters and were quantified in patient and control groups. Furthermore, correlations with seizure duration were investigated. In the patient group, native and total thiol levels and native thiol/total thiol ratios were low, and disulfide levels, disulfide/native thiol, and disulfide/total thiol ratios were significantly higher than in the control group. Negative correlations were observed between seizure duration, total and native thiol levels, and native thiol/total thiol ratio, whereas positive correlations were observed between seizure duration and disulfide/native thiol and disulfide/total thiol ratio. The sensitivities of both disulfide/native thiol and disulfide/total thiol ratios were high for simple febrile seizures. Simple febrile seizures may cause impairment in favor of disulfide bonds in thiol/disulfide homeostasis. Overall, these changes may contribute to neuronal cell damage after simple febrile seizures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gupta A (2016) Febrile Seizure. Continuum (Minneap Minn) 22:51–59

    Google Scholar 

  2. Academy of Paediatrics. Committee on Quality Improvement, Subcommittee on Febrile Seizures (1999) Practice parameter: long-term treatment of the child with simple febrile seizures. Am Paediatr 103:1307–1309

    Article  Google Scholar 

  3. Commission on Epidemiology and Prognosis, International League Against Epilepsy (1993) Guidelines for epidemiologic studies on epilepsy. Epilepsia 34:592–596

    Article  Google Scholar 

  4. Waruiru C, Appleton R (2004) Febrile seizures: an update. Arch Dis Child 89:751–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hesdorffer DC, Benn EK, Bagiella E, FEBSTAT Study Team et al (2011) Distribution of febrile seizure duration and associations with development. Ann Neurol 70:93–100

    Article  PubMed  PubMed Central  Google Scholar 

  6. Verity CM, Golding J (1991) Risk of epilepsy after febrile convulsions: a national cohort study. BMJ 303:1373–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shin EJ, Jeong JH, Chung YH et al (2011) Role of oxidative stress in epileptic seizures. Neurochem Int 59:122–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nagy P (2013) Kinetics and mechanisms of thiol–disulfide exchange covering direct substitution and thiol oxidation-mediated pathways. Antioxid Redox Signal 18:1623–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Karande S (2007) Febrile seizures: a review for family physicians. Indian J Med Sci 61:161–172

    Article  PubMed  Google Scholar 

  10. Dube CM, Brewster AL, Richichi C, Zha Q, Baram TZ (2007) Fever, febrile seizures and epilepsy [Erratum in: Trends Neurosci 30:611]. Trends Neurosci 30:490–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Güneş S, Dirik E, Yiş U et al (2009) Oxidant status in children after febrile seizures. Pediatr Neurol 40:47–49

    Article  PubMed  Google Scholar 

  12. Stadtman ER (2001) Protein oxidation in aging and age-related diseases. Ann N Y Acad Sci 928:22–38

    Article  CAS  PubMed  Google Scholar 

  13. Yang ZX, Qin J (2004) Interaction between endogenous nitric oxide and carbon monoxide in the pathogenesis of recurrent febrile seizures. Biochem Biophys Res Commun 315:349–355

    Article  CAS  PubMed  Google Scholar 

  14. Patel M (2004) Mitochondrial dysfunction and oxidative stress: cause and consequence of epileptic seizures. Free Radic Biol Med 37:1951–1962

    Article  CAS  PubMed  Google Scholar 

  15. Patel MN (2002) Oxidative stress, mitochondrial dysfunction, and epilepsy. Free Radic Res 36:1139–1146

    Article  CAS  PubMed  Google Scholar 

  16. Rahal A, Kumar A, Singh V et al (2014) Oxidative stress, prooxidants, and antioxidants: the interplay. Biomed Res Int 2014:1–19

    Article  Google Scholar 

  17. Cremers CM, Jakob U (2013) Oxidant sensing by reversible disulfide bond formation. J Biol Chem 288:26489–26496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Turell L, Radi R, Alvarez B (2013) The thiol pool in human plasma: the central contribution of albumin to redox processes. Free Radic Biol Med 65:244–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Erel O, Neselioglu S (2014) A novel and automated assay for thiol/disulphide homeostasis. Clin Biochem 47:326–332

    Article  CAS  PubMed  Google Scholar 

  20. Yilmaz FM, Yilmaz G, Erol MF, Köklü S, Yücel D (2010) Nitric oxide, lipid peroxidation and total thiol levels in acute appendicitis. J Clin Lab Anal 24:63–66

    Article  CAS  PubMed  Google Scholar 

  21. Yuksel M, Ates I, Kaplan M et al (2016) The dynamic thiol/disulphide homeostasis in inflammatory bowel disease and its relation with disease activity and pathogenesis. Int J Color Dis 31:1229–1231

    Article  Google Scholar 

  22. Biswas S, Chida AS, Rahman I (2006) Redox modifications of protein–thiols: emerging roles in cell signaling. Biochem Pharmacol 28(71):551–564

    Article  Google Scholar 

  23. Circu ML, AwTY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gumusyayla S, Vural G, Bektas H, Neselioglu S, Deniz O, Erel O (2016) A novel oxidative stress marker in migraine patients: dynamic thiol-disulphide homeostasis. Neurol Sci 37:1311–1317

    Article  PubMed  Google Scholar 

  25. Kurt ANC, Aydın A, Demir H, Erel Ö (2017) Headache in children and dynamic thiol/disulfide balance evaluation with a new method. Neurol Sci. doi:10.1007/s10072-017-3004–8

  26. Martinc B, Grabnar I, Vovk T (2012) The role of reactive species in epileptogenesis and influence of antiepileptic drug therapy on oxidative stress. Curr Neuropharmacol 10:328–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59:1609–1623

    Article  CAS  PubMed  Google Scholar 

  28. Abuhandan M, Calik M, Taskin A, Yetkin I, Selek S, Iscan A (2013) The oxidative and antioxidative status of simple febrile seizure patients. J Pak Med Assoc 63:594–597

    PubMed  Google Scholar 

  29. Akarsu S, Yılmaz S, Ozan S, Kurt A, Benzer F, Gurgoze MK (2007) Effects of febrile and afebrile seizures on oxidant state in children. Pediatr Neurol 36:307–311

    Article  PubMed  Google Scholar 

  30. Mahyar A, Ayazi P, Dalirani R et al (2017) Feasible relation between glutathione peroxidase and febrile seizure. Iran J Child Neurol 11:65–69

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahri Elmas.

Ethics declarations

Funding

This study was not funded.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elmas, B., Erel, Ö., Ersavaş, D. et al. Thiol/disulfide homeostasis as a novel indicator of oxidative stress in children with simple febrile seizures. Neurol Sci 38, 1969–1975 (2017). https://doi.org/10.1007/s10072-017-3087-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-017-3087-2

Keywords

Navigation