Skip to main content

Advertisement

Log in

Upregulation of miR-183 expression and its clinical significance in human brain glioma

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Glioma is the most common type of primary malignant tumor in the central nervous system (CNS) with a high incidence and a high mortality rate, as well as an extremely low 5-year survival rate. As a class of small non-coding RNAs, microRNAs (miRNAs) may be closely involved in carcinogenesis and might also be connected with glioma diagnosis and prognosis. In this study, we aimed at investigating the expression level of microRNA-183 (miR-183) in 105 cases of glioma tissues of four World Health Organization (WHO) grades and 10 cases of normal brain tissues and its potential predictive and prognostic values in glioma. We found that the expression levels of miR-183 were significantly higher in glioma tissues than that in normal brain tissues, and also higher in high-grade gliomas (WHO grade III and IV) compared with low-grade gliomas (WHO grade I and II). The miR-183 expression level was classified as low or high according to the median value. High expression of miR-183 was found to significantly correlate with larger tumor size, higher WHO grade, and worse Karnofsky performance score (KPS). Kaplan–Meier survival analysis showed that patients with high miR-183 expression had worse overall survival (OS) and progression-free survival (PFS) than patients with low miR-183 expression. Moreover, univariate and multivariate analyses indicated that miR-183 expression level was an independent prognostic parameter of a patient’s OS and PFS. In conclusion, our study indicated that miR-183 was upregulated in glioma, and that it may be used as a potential biomarker of poor prognosis in patients with glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. McCarthy BJ, Shibui S, Kayama T, Miyaoka E, Narita Y, Murakami M et al (2012) Primary CNS germ cell tumors in Japan and the United States: an analysis of 4 tumor registries. Neuro Oncol 14:1194–1200

    Article  PubMed  PubMed Central  Google Scholar 

  2. Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A et al (2007) Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21:2683–2710

    Article  CAS  PubMed  Google Scholar 

  3. Meyer MA (1850) Malignant gliomas in adults. N Engl J Med 2008(359):1850

    Google Scholar 

  4. Zhang X, Yang H, Gong B, Jiang C, Yang L (2012) Combined gene expression and protein interaction analysis of dynamic modularity in glioma prognosis. J Neurooncol 107:281–288

    Article  CAS  PubMed  Google Scholar 

  5. Liang Z, Gao Y, Shi W, Zhai D, Li S, Jing L et al (2013) Expression and significance of microRNA-183 in hepatocellular carcinoma. Sci World J 2013:1–6

    Google Scholar 

  6. Yates LA, Norbury CJ, Gilbert RJ (2013) The long and short of microRNA. Cell 153:516–519

    Article  CAS  PubMed  Google Scholar 

  7. Uchino K, Ochiya T, Takeshita F (2013) RNAi therapeutics and applications of microRNAs in cancer treatment. Jpn J Clin Oncol 43:596–607

    Article  PubMed  Google Scholar 

  8. Wang G, Mao W, Zheng S (2008) MicroRNA-183 regulates Ezrin expression in lung cancer cells. FEBS Lett 582:3663–3668

    Article  CAS  PubMed  Google Scholar 

  9. Lowery AJ, Miller N, Dwyer RM, Kerin MJ (2010) Dysregulated miR-183 inhibits migration in breast cancer cells. BMC Cancer 10:502

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cao LL, Xie JW, Lin Y, Zheng CH, Li P, Wang JB et al (2014) MiR-183 inhibits invasion of gastric cancer by targeting Ezrin. Int J Clin Exp Pathol 7:5582–5594

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Sarver AL, Li L, Subramanian S (2010) MicroRNA miR-183 functions as an oncogene by targeting the transcription factor EGR1 and promoting tumor cell migration. Cancer Res 70:9570–9580

    Article  CAS  PubMed  Google Scholar 

  12. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  13. Lin S, Gregory RI (2015) MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 15:321–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6:259–269

    Article  CAS  PubMed  Google Scholar 

  15. Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N et al (2008) MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 299:425–436

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Yu SL, Chen HY, Chang GC, Chen CY, Chen HW, Singh S et al (2008) MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell 13:48–57

    Article  CAS  PubMed  Google Scholar 

  17. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070

    Article  CAS  PubMed  Google Scholar 

  18. Ciafre SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G et al (2005) Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334:1351–1358

    Article  CAS  PubMed  Google Scholar 

  19. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Article  CAS  PubMed  Google Scholar 

  20. Bastian BC, LeBoit PE, Hamm H, Brocker EB, Pinkel D (1998) Chromosomal gains and losses in primary cutaneous melanomas detected by comparative genomic hybridization. Cancer Res 58:2170–2175

    CAS  PubMed  Google Scholar 

  21. Zhao H, Guo M, Zhao G, Ma Q, Ma B, Qiu X et al (2012) MiR-183 inhibits the metastasis of osteosarcoma via downregulation of the expression of Ezrin in F5M2 cells. Int J Mol Med 30:1013–1020

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hunter KW (2004) Ezrin, a key component in tumor metastasis. Trends Mol Med 10:201–204

    Article  CAS  PubMed  Google Scholar 

  23. Xu L, Li Y, Yan D, He J, Liu D (2014) MicroRNA-183 inhibits gastric cancer proliferation and invasion via directly targeting Bmi-1. Oncol Lett 8:2345–2351

    PubMed  PubMed Central  Google Scholar 

  24. Li J, Fu H, Xu C, Tie Y, Xing R, Zhu J et al (2010) MiR-183 inhibits TGF-beta1-induced apoptosis by downregulation of PDCD4 expression in human hepatocellular carcinoma cells. BMC Cancer 10:354

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang H, Ozaki I, Mizuta T, Hamajima H, Yasutake T, Eguchi Y et al (2006) Involvement of programmed cell death 4 in transforming growth factor-beta1-induced apoptosis in human hepatocellular carcinoma. Oncogene 25:6101–6112

    Article  CAS  PubMed  Google Scholar 

  26. Bohm M, Sawicka K, Siebrasse JP, Brehmer-Fastnacht A, Peters R, Klempnauer KH (2003) The transformation suppressor protein Pdcd4 shuttles between nucleus and cytoplasm and binds RNA. Oncogene 22:4905–4910

    Article  PubMed  Google Scholar 

  27. Jansen AP, Camalier CE, Colburn NH (2005) Epidermal expression of the translation inhibitor programmed cell death 4 suppresses tumorigenesis. Cancer Res 65:6034–6041

    Article  CAS  PubMed  Google Scholar 

  28. Lu YY, Zheng JY, Liu J, Huang CL, Zhang W, Zeng Y (2015) MiR-183 induces cell proliferation, migration, and invasion by regulating PDCD4 expression in the SW1990 pancreatic cancer cell line. Biomed Pharmacother 70:151–157

    Article  CAS  PubMed  Google Scholar 

  29. Wei C, Song H, Sun X, Li D, Song J, Hua K et al (2015) MiR-183 regulates biological behavior in papillary thyroid carcinoma by targeting the programmed cell death 4. Oncol Rep 34:211–220

    PubMed  Google Scholar 

  30. Zhang L, Quan H, Wang S, Li X, Che X (2015) MiR-183 promotes growth of non-small cell lung cancer cells through FoxO1 inhibition. Tumour Biol 36:8121–8126

    Article  CAS  PubMed  Google Scholar 

  31. Tang H, Bian Y, Tu C, Wang Z, Yu Z, Liu Q et al (2013) The miR-183/96/182 cluster regulates oxidative apoptosis and sensitizes cells to chemotherapy in gliomas. Curr Cancer Drug Targets 13:221–231

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Z, Li S, Cheng SY (2013) The miR-183 approximately 96 approximately 182 cluster promotes tumorigenesis in a mouse model of medulloblastoma. J Biomed Res 27:486–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tanaka H, Sasayama T, Tanaka K, Nakamizo S, Nishihara M, Mizukawa K et al (2013) MicroRNA-183 upregulates HIF-1alpha by targeting isocitrate dehydrogenase 2 (IDH2) in glioma cells. J Neurooncol 111:273–283

    Article  CAS  PubMed  Google Scholar 

  34. Targeting Semenza GL (2003) HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732

    Article  Google Scholar 

  35. Semenza GL (2010) HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev 20:51–56

    Article  CAS  PubMed  Google Scholar 

  36. Zhou T, Zhang GJ, Zhou H, Xiao HX, Li Y (2014) Overexpression of microRNA-183 in human colorectal cancer and its clinical significance. Eur J Gastroenterol Hepatol 26:229–233

    Article  CAS  PubMed  Google Scholar 

  37. Ueno K, Hirata H, Shahryari V, Deng G, Tanaka Y, Tabatabai ZL et al (2013) MicroRNA-183 is an oncogene targeting Dkk-3 and SMAD4 in prostate cancer. Br J Cancer 108:1659–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Science Foundation of China (Nos. 81371294, 81401026, 81400980 and 81401029) and Jiangsu Provincial Natural Science Foundation of China (No. BK20141375).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shanshui Xu or Chunhua Hang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Z. Ye and Z. Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Z., Zhang, Z., Wu, L. et al. Upregulation of miR-183 expression and its clinical significance in human brain glioma. Neurol Sci 37, 1341–1347 (2016). https://doi.org/10.1007/s10072-016-2599-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-016-2599-5

Keywords

Navigation