Skip to main content
Log in

Identifying the role of microRNAs in spinal cord injury

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Spinal cord injury (SCI) is medically and socioeconomically debilitating, and effective treatments are lacking. The elucidation of the pathophysiological mechanisms underlying SCI is essential for developing effective treatments for SCI. MicroRNAs (miRNAs) are small non-coding RNA molecules (18–24 nucleotides long) that regulate gene expression by interacting with specific target sequences. Recent studies suggest that miRNAs can act as post-transcriptional regulators to inhibit mRNA translation. Bioinformatic analyses indicate that the altered expression of miRNAs has an effect on critical processes of SCI physiopathology, including astrogliosis, oxidative stress, inflammation, apoptosis, and neuroplasticity. Therefore, the study of miRNAs may provide new insights into the molecular mechanisms of SCI. Current studies have also provided potential therapeutic clinical applications that involve targeting mRNAs to treat SCI. This review summarizes the biogenesis and function of miRNAs and the roles of miRNAs in SCI. We also discuss the potential therapeutic applications of miRNA-based interventions for SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Dumont RJ, Okonkwo DO, Verma S, Hurlbert RJ, Boulos PT, Ellegala DB, Dumont AS (2001) Acute spinal cord injury, part I: pathophysiologic mechanisms. Clin Neuropharmacol 24:254–264

    Article  CAS  PubMed  Google Scholar 

  2. Sekhon LH, Fehlings MG (2001) Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine 26:S2–S12

    Article  CAS  PubMed  Google Scholar 

  3. Harkema SJ (2001) Neural plasticity after human spinal cord injury: application of locomotor training to the rehabilitation of walking. Neuroscientist 7:455–468

    Article  CAS  PubMed  Google Scholar 

  4. Strickland ER, Hook MA, Balaraman S, Huie JR, Grau JW, Miranda RC (2011) MicroRNA dysregulation following spinal cord contusion: implications for neural plasticity and repair. Neuroscience 186:146–160. doi:10.1016/j.neuroscience.2011.03.063

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Ambros V (2001) microRNAs: tiny regulators with great potential. Cell 107:823–826

    Article  CAS  PubMed  Google Scholar 

  6. Johnson SM, Lin SY, Slack FJ (2003) The time of appearance of the C. elegans let-7 microRNA is transcriptionally controlled utilizing a temporal regulatory element in its promoter. Dev Biol 259:364–379. doi:10.1016/s0012-1606(03)00202-1

    Article  CAS  PubMed  Google Scholar 

  7. Megraw M, Baev V, Rusinov V, Jensen ST, Kalantidis K, Hatzigeorgiou AG (2006) MicroRNA promoter element discovery in Arabidopsis. RNA Publ RNA Soc 12:1612–1619. doi:10.1261/rna.130506

    Article  CAS  Google Scholar 

  8. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114. doi:10.1038/nrg2290

    Article  CAS  PubMed  Google Scholar 

  9. Krichevsky AM (2007) MicroRNA profiling: from dark matter to white matter, or identifying new players in neurobiology. Sci World J 7:155–166

    Article  Google Scholar 

  10. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human microRNA targets. PLoS Biol 2:1862–1879. doi:10.1371/journal.pbio.0020363

    Article  CAS  Google Scholar 

  11. Yunta M, Nieto-Diaz M, Esteban FJ, Caballero-Lopez M, Navarro-Ruiz R, Reigada D, Pita-Thomas DW, del Aguila A, Munoz-Galdeano T, Maza RM (2012) MicroRNA dysregulation in the spinal cord following traumatic injury. PLoS ONE 7. doi:10.1371/journal.pone.0034534

  12. Fineberg SK, Kosik KS, Davidson BL (2009) MicroRNAs potentiate neural development. Neuron 64:303–309. doi:10.1016/j.neuron.2009.10.020

    Article  CAS  PubMed  Google Scholar 

  13. Hebert SS, De Strooper B (2009) Alterations of the microRNA network cause neurodegenerative disease. Trends Neurosci 32:199–206. doi:10.1016/j.tins.2008.12.003

    Article  CAS  PubMed  Google Scholar 

  14. Genda Y, Arai M, Ishikawa M, Tanaka S, Okabe T, Sakamoto A (2013) microRNA changes in the dorsal horn of the spinal cord of rats with chronic constriction injury: a TaqMan (R) low density array study. Int J Mol Med 31:129–137. doi:10.3892/ijmm.2012.1163

    CAS  PubMed  Google Scholar 

  15. Mahishi LH, Hart RP, Lynch DR, Ratan RR (2012) miR-886-3p levels are elevated in Friedreich ataxia. J Neurosci 32:9369–9373. doi:10.1523/jneurosci.0059-12.2012

    Article  CAS  PubMed  Google Scholar 

  16. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small rnas with antisense complementarity to lin-14. Cell 75:843–854. doi:10.1016/0092-8674(93)90529-y

    Article  CAS  PubMed  Google Scholar 

  17. Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern-formation in C. elegans. Cell 75:855–862. doi:10.1016/0092-8674(93)90530-4

    Article  CAS  PubMed  Google Scholar 

  18. Ruvkun G, Wightman B, Ha I (2004) The 20 years it took to recognize the importance of tiny RNAs. Cell S116:S93–S96. doi:10.1016/s0092-8674(04)00034-0

    Article  Google Scholar 

  19. Berezikov E, Chung WJ, Willis J, Cuppen E, Lai EC (2007) Mammalian mirtron genes. Mol Cell 28:328–336. doi:10.1016/j.molcel.2007.09.028

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448:83–86. doi:10.1038/nature05983

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Han JJ, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN (2004) The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18:3016–3027. doi:10.1101/gad.1262504

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Okamura K, Hagen JW, Duan H, Tyler DM, Lai EC (2007) The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130:89–100. doi:10.1016/j.cell.2007.06.028

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. De Biase A, Knoblach SM, Di Giovanni S, Fan C, Molon A, Hoffman EP, Faden AI (2005) Gene expression profiling of experimental traumatic spinal cord injury as a function of distance from impact site and injury severity. Physiol Genomics 22:368–381. doi:10.1152/physiolgenomics.00081.2005

    Article  PubMed  Google Scholar 

  24. Ziu M, Fletcher L, Rana S, Jimenez DF, Digicaylioglu M (2011) Temporal differences in microRNA expression patterns in astrocytes and neurons after ischemic injury. PLoS ONE 6:e14724. doi:10.1371/journal.pone.0014724

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Blackburn D, Sargsyan S, Monk PN, Shaw PJ (2009) Astrocyte function and role in motor neuron disease: a future therapeutic target? Glia 57:1251–1264. doi:10.1002/glia.20848

    Article  PubMed  Google Scholar 

  26. Gwak YS, Kang J, Unabia GC, Hulsebosch CE (2012) Spatial and temporal activation of spinal glial cells: role of gliopathy in central neuropathic pain following spinal cord injury in rats. Exp Neurol 234:362–372. doi:10.1016/j.expneurol.2011.10.010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Karimi-Abdolrezaee S, Billakanti R (2012) Reactive astrogliosis after spinal cord injury—beneficial and detrimental effects. Mol Neurobiol 46:251–264. doi:10.1007/s12035-012-8287-4

    Article  CAS  PubMed  Google Scholar 

  28. Lee JK, Zheng B (2008) Axon regeneration after spinal cord injury: insight from genetically modified mouse models. Restor Neurol Neurosci 26:175–182

    PubMed Central  PubMed  Google Scholar 

  29. Sahni V, Mukhopadhyay A, Tysseling V, Hebert A, Birch D, McGuire TL, Stupp SI, Kessler JA (2010) BMPR1a and BMPR1b signaling exert opposing effects on gliosis after spinal cord injury. J Neurosci 30:1839–1855. doi:10.1523/jneurosci.4459-09.2010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Bhalala OG, Pan L, Sahni V, McGuire TL, Gruner K, Tourtellotte WG, Kessler JA (2012) microRNA-21 regulates astrocytic response following spinal cord injury. J Neurosci 32:17935–17947. doi:10.1523/jneurosci.3860-12.2012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Lu HB, Hu JZ, Huang JH, Zeng L, Wang G, Cao M (2013) Anti-apoptotic effect of microRNA-21 after contusion spinal cord injury in rats. J Neurotrauma. doi:10.1089/neu.2012.2748

    Google Scholar 

  32. Iyer A, Zurolo E, Prabowo A, Fluiter K, Spliet WG, van Rijen PC, Gorter JA, Aronica E (2012) MicroRNA-146a: a key regulator of astrocyte-mediated inflammatory response. PLoS ONE 7:e44789. doi:10.1371/journal.pone.0044789

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Wang X, Ha T, Liu L, Zou J, Zhang X, Kalbfleisch J, Gao X, Williams D, Li C (2013) Increased expression of microRNA-146a decreases myocardial ischaemia/reperfusion injury. Cardiovasc Res 97:432–442. doi:10.1093/cvr/cvs356

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Cui JG, Li YY, Zhao Y, Bhattacharjee S, Lukiw WJ (2010) Differential regulation of interleukin-1 receptor-associated kinase-1 (IRAK-1) and IRAK-2 by microRNA-146a and NF-kappaB in stressed human astroglial cells and in Alzheimer disease. J Biol Chem 285:38951–38960. doi:10.1074/jbc.M110.178848

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Mor E, Cabilly Y, Goldshmit Y, Zalts H, Modai S, Edry L, Elroy-Stein O, Shomron N (2011) Species-specific microRNA roles elucidated following astrocyte activation. Nucleic Acids Res 39:3710–3723. doi:10.1093/nar/gkq1325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Johann S, Kampmann E, Denecke B, Arnold S, Kipp M, Mey J, Beyer C (2008) Expression of enzymes involved in the prostanoid metabolism by cortical astrocytes after LPS-induced inflammation. Journal of molecular neuroscience : MN 34:177–185. doi:10.1007/s12031-007-9028-4

    Article  CAS  PubMed  Google Scholar 

  37. Halonen SK, Woods T, McInnerney K, Weiss LM (2006) Microarray analysis of IFN-gamma response genes in astrocytes. J Neuroimmunol 175:19–30. doi:10.1016/j.jneuroim.2006.02.015

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Lewen A, Matz P, Chan PH (2000) Free radical pathways in CNS injury. J Neurotrauma 17:871–890. doi:10.1089/neu.2000.17.871

    Article  CAS  PubMed  Google Scholar 

  39. Xu J, Kim GM, Chen SW, Yan P, Ahmed SH, Ku G, Beckman JS, Xu XM, Hsu CY (2001) iNOS and nitrotyrosine expression after spinal cord injury. J Neurotrauma 18:523–532. doi:10.1089/089771501300227323

    Article  CAS  PubMed  Google Scholar 

  40. Hulsebosch CE (2002) Recent advances in pathophysiology and treatment of spinal cord injury. Adv Physiol Educ 26:238–255

    PubMed  Google Scholar 

  41. Jee MK, Jung JS, Choi JI, Jang JA, Kang KS, Im YB, Kang SK (2012) MicroRNA 486 is a potentially novel target for the treatment of spinal cord injury. Brain 135:1237–1252. doi:10.1093/brain/aws047

    Article  PubMed  Google Scholar 

  42. Shimizu C, Akazawa C, Nakanishi S, Kageyama R (1995) Math-2, a mammalian helix–loop–helix factor structurally related to the product of Drosophila proneural gene atonal, is specifically expressed in the nervous-system. Eur J Biochem 229:239–248

    Article  CAS  PubMed  Google Scholar 

  43. Montzka K, Lassonczyk N, Tschoeke B, Neuss S, Fuehrmann T, Franzen R, Smeets R, Brook GA, Woeltje M (2009) Neural differentiation potential of human bone marrow-derived mesenchymal stromal cells: misleading marker gene expression. BMC Neurosci 10. doi:10.1186/1471-2202-10-16

  44. Uittenbogaard M, Baxter KK, Chiaramello A (2010) NeuroD6 genomic signature bridging neuronal differentiation to survival via the molecular chaperone network. J Neurosci Res 88:33–54. doi:10.1002/jnr.22182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Kim EJ, Hori K, Wyckoff A, Dickel LK, Koundakjian EJ, Goodrich LV, Johnson JE (2011) Spatiotemporal fate map of neurogenin1 (Neurog1) lineages in the mouse central nervous system. J Comp Neurol 519:1355–1370. doi:10.1002/cne.22574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Oh HJ, Hwang DW, Youn H, Lee DS (2013) In vivo bioluminescence reporter gene imaging for the activation of neuronal differentiation induced by the neuronal activator neurogenin 1 (Ngn1) in neuronal precursor cells. Eur J Nucl Med Mol Imaging. doi:10.1007/s00259-013-2457-0

    PubMed  Google Scholar 

  47. Jee MK, Jung JS, Im YB, Jung SJ, Kang SK (2012) Silencing of miR20a is crucial for Ngn1-mediated neuroprotection in injured spinal cord. Hum Gene Ther 23:508–520. doi:10.1089/hum.2011.121

    Article  CAS  PubMed  Google Scholar 

  48. Zelko IN, Mariani TJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 33:337–349. doi:10.1016/s0891-5849(02)00905-x

    Article  CAS  PubMed  Google Scholar 

  49. Liu NK, Wang XF, Lu QB, Xu XM (2009) Altered microRNA expression following traumatic spinal cord injury. Exp Neurol 219:424–429. doi:10.1016/j.expneurol.2009.06.015

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Veiga S, Ly J, Chan PH, Bresnahan JC, Beattie MS (2011) SOD1 overexpression improves features of the oligodendrocyte precursor response in vitro. Neurosci Lett 503:10–14. doi:10.1016/j.neulet.2011.07.053

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Dharap A, Bowen K, Place R, Li L-C, Vemuganti R (2009) Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J Cereb Blood Flow Metab 29:675–687

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Hawthorne AL, Popovich PG (2011) Emerging concepts in myeloid cell biology after spinal cord injury. Neurotherapeutics 8:252–261. doi:10.1007/s13311-011-0032-6

    Article  PubMed Central  PubMed  Google Scholar 

  53. Hausmann O (2003) Post-traumatic inflawing spinal cord injury. Spinal Cord 41:369–378. doi:10.1038/sj.sc.3101483

    Article  CAS  PubMed  Google Scholar 

  54. Alam MM, O’Neill LA (2011) MicroRNAs and the resolution phase of inflammation in macrophages. Eur J Immunol 41:2482–2485. doi:10.1002/eji.201141740

    Article  CAS  PubMed  Google Scholar 

  55. Izumi B, Nakasa T, Tanaka N, Nakanishi K, Kamei N, Yamamoto R, Nakamae T, Ohta R, Fujioka Y, Yamasaki K, Ochi M (2011) MicroRNA-223 expression in neutrophils in the early phase of secondary damage after spinal cord injury. Neurosci Lett 492:114–118. doi:10.1016/j.neulet.2011.01.068

    Article  CAS  PubMed  Google Scholar 

  56. Nakanishi K, Nakasa T, Tanaka N, Ishikawa M, Yamada K, Yamasaki K, Kamei N, Izumi B, Adachi N, Miyaki S, Asahara H, Ochi M (2010) Responses of microRNAs 124a and 223 following spinal cord injury in mice. Spinal Cord 48:192–196. doi:10.1038/sc.2009.89

    Article  CAS  PubMed  Google Scholar 

  57. Profyris C, Cheema SS, Zang D, Azari MF, Boyle K, Petratos S (2004) Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiol Dis 15:415–436. doi:10.1016/j.nbd.2003.11.015

    Article  PubMed  Google Scholar 

  58. Singh S, Metz I, Amor S, van der Valk P, Stadelmann C, Bruck W (2013) Microglial nodules in early multiple sclerosis white matter are associated with degenerating axons. Acta Neuropathol 125:595–608. doi:10.1007/s00401-013-1082-0

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Janssen KT, Mac Nair CE, Dietz JA, Schlamp CL, Nickells RW (2013) Nuclear atrophy of retinal ganglion cells precedes the bax-dependent stage of apoptosis. Invest Ophthalmol Vis Sci 54:1805–1815. doi:10.1167/iovs.11-9310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Sayed D, He M, Hong C, Gao S, Rane S, Yang Z, Abdellatif M (2010) MicroRNA-21 is a downstream effector of AKT that mediates its antiapoptotic effects via suppression of Fas ligand. J Biol Chem 285:20281–20290. doi:10.1074/jbc.M110.109207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Buller B, Liu X, Wang X, Zhang RL, Zhang L, Hozeska-Solgot A, Chopp M, Zhang ZG (2010) MicroRNA-21 protects neurons from ischemic death. FEBS J 277:4299–4307. doi:10.1111/j.1742-4658.2010.07818.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Sampson VB, Rong NH, Han J, Yang Q, Aris V, Soteropoulos P, Petrelli NJ, Dunn SP, Krueger LJ (2007) MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res 67:9762–9770. doi:10.1158/0008-5472.can-07-2462

    Article  CAS  PubMed  Google Scholar 

  63. Guo CJ, Pan Q, Li DG, Sun H, Liu BW (2009) miR-15b and miR-16 are implicated in activation of the rat hepatic stellate cell: an essential role for apoptosis. J Hepatol 50:766–778. doi:10.1016/j.jhep.2008.11.025

    Article  CAS  PubMed  Google Scholar 

  64. Liu G, Keeler BE, Zhukareva V, Houle JD (2010) Cycling exercise affects the expression of apoptosis-associated microRNAs after spinal cord injury in rats. Exp Neurol 226:200–206. doi:10.1016/j.expneurol.2010.08.032

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Ding Y, Kastin AJ, Pan W (2005) Neural plasticity after spinal cord injury. Curr Pharm Des 11:1441

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Loohuis NO, Kos A, Martens G, Van Bokhoven H, Kasri NN, Aschrafi A (2012) MicroRNA networks direct neuronal development and plasticity. Cell Mol Life Sci 69:89–102

    Article  Google Scholar 

  67. Codeluppi S, Svensson CI, Hefferan MP, Valencia F, Silldorff MD, Oshiro M, Marsala M, Pasquale EB (2009) The Rheb-mTOR pathway is upregulated in reactive astrocytes of the injured spinal cord. J Neurosci 29:1093–1104. doi:10.1523/jneurosci.4103-08.2009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Abe N, Borson SH, Gambello MJ, Wang F, Cavalli V (2010) Mammalian target of rapamycin (mTOR) activation increases axonal growth capacity of injured peripheral nerves. J Biol Chem 285:28034–28043. doi:10.1074/jbc.M110.125336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Walker CL, Walker MJ, Liu N-K, Risberg EC, Gao X, Chen J, Xu X-M (2012) Systemic bisperoxovanadium activates Akt/mTOR, reduces autophagy, and enhances recovery following cervical spinal cord injury. PLoS ONE 7:315–326. doi:10.1371/journal.pone.0030012

    Google Scholar 

  70. Carracedo A, Alimonti A, Pandolfi PP (2011) PTEN level in tumor suppression: how much is too little? Cancer Res 71:629–633. doi:10.1158/0008-5472.can-10-2488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Park KK, Liu K, Hu Y, Smith PD, Wang C, Cai B, Xu BG, Connolly L, Kramvis I, Sahin M, He ZG (2008) Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 322:963–966. doi:10.1126/science.1161566

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Letzen BS, Liu C, Thakor NV, Gearhart JD, All AH, Kerr CL (2010) MicroRNA expression profiling of oligodendrocyte differentiation from human embryonic stem cells. PLoS ONE 5:e10480. doi:10.1371/journal.pone.0010480

    Article  PubMed Central  PubMed  Google Scholar 

  73. Liu G, Detloff MR, Miller KN, Santi L, Houle JD (2012) Exercise modulates microRNAs that affect the PTEN/mTOR pathway in rats after spinal cord injury. Exp Neurol 233:447–456. doi:10.1016/j.expneurol.2011.11.018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Ying Z, Roy RR, Edgerton VR, Gomez-Pinilla F (2005) Exercise restores levels of neurotrophins and synaptic plasticity following spinal cord injury. Exp Neurol 193:411–419. doi:10.1016/j.expneurol.2005.01.015

    Article  CAS  PubMed  Google Scholar 

  75. Yu Y-M, Gibbs KM, Davila J, Campbell N, Sung S, Todorova TI, Otsuka S, Sabaawy HE, Hart RP, Schachner M (2011) MicroRNA miR-133b is essential for functional recovery after spinal cord injury in adult zebrafish. Eur J Neurosci 33:1587–1597. doi:10.1111/j.1460-9568.2011.07643.x

    Article  PubMed Central  PubMed  Google Scholar 

  76. Nakatani Y, Kawakami A, Kudo A (2007) Cellular and molecular processes of regeneration, with special emphasis on fish fins. Dev Growth Differ 49:145–154. doi:10.1111/j.1440-169x.2007.00917.x

    Article  PubMed  Google Scholar 

  77. Becker CG, Becker T (2008) Adult zebrafish as a model for successful central nervous system regeneration. Restor Neurol Neurosci 26:71–80

    PubMed  Google Scholar 

  78. Xin H, Li Y, Liu Z, Wang X, Shang X, Cui Y, Gang Zhang Z, Chopp M (2013) Mir-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem cells (Dayton, Ohio). doi:10.1002/stem.1409

  79. Liu XZ, Xu XM, Hu R, Du C, Zhang SX, McDonald JW, Dong HX, Wu YJ, Fan GS, Jacquin MF, Hsu CY, Choi DW (1997) Neuronal and glial apoptosis after traumatic spinal cord injury. J Neurosci 17:5395–5406

    CAS  PubMed  Google Scholar 

  80. Lewis BP, I-h Shih, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798

    Article  CAS  PubMed  Google Scholar 

  81. Cheng Y, Zhu P, Yang J, Liu X, Dong S, Wang X, Chun B, Zhuang J, Zhang C (2010) Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4. Cardiovasc Res 87:431–439. doi:10.1093/cvr/cvq082

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Belmont PJ, Chen WJ, Thuerauf DJ, Glembotski CC (2012) Regulation of microRNA expression in the heart by the ATF6 branch of the ER stress response. J Mol Cell Cardiol 52:1176–1182. doi:10.1016/j.yjmcc.2012.01.017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Martinez-Morales PL, Revilla A, Ocana I, Gonzalez C, Sainz P, McGuire D, Liste I (2013) Progress in stem cell therapy for major human neurological disorders. Stem Cell Rev. doi:10.1007/s12015-013-9443-6

    PubMed  Google Scholar 

  84. Saugstad JA (2010) MicroRNAs as effectors of brain function with roles in ischemia and injury, neuroprotection, and neurodegeneration. J Cereb Blood Flow Metab 30:1564–1576. doi:10.1038/jcbfm.2010.101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Le Doux JM, Davis HE, Morgan JR, Yarmush ML (1999) Kinetics of retrovirus production and decay. Biotechnol Bioeng 63:654–662

    Article  PubMed  Google Scholar 

  86. Wei H, Wang C, Zhang C, Li P, Wang F, Zhang Z (2010) Comparative profiling of microRNA expression between neural stem cells and motor neurons in embryonic spinal cord in rat. Int J Dev Neurosci 28:545–551. doi:10.1016/j.ijdevneu.2010.04.007

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xijing He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J., Lu, M., He, X. et al. Identifying the role of microRNAs in spinal cord injury. Neurol Sci 35, 1663–1671 (2014). https://doi.org/10.1007/s10072-014-1940-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-014-1940-0

Keywords

Navigation