Skip to main content

Advertisement

Log in

Neuroprotective effect of ceftriaxone in a rat model of traumatic brain injury

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Traumatic brain injury (TBI) is a leading cause of mortality and disability in children and young adults worldwide. Neurologic impairment is caused by both immediate brain tissue disruption and post-injury cellular and molecular events that worsen the primary neurologic insult. The β-lactam antibiotic ceftriaxone (CTX) has been reported to induce neuroprotection in animal models of diverse neurologic diseases via up-regulation of GLT-1. However, no studies have addressed the neuroprotective role of CTX in the setting of TBI, and whether the mechanism is involved in the modulation of neuronal autophagy remains totally unclear. The present study was designed to determine the hypothesis that administration of CTX could significantly enhance functional recovery in a rat model of TBI and whether CTX treatment could up-regulate GLT-1 expression and suppress post-TBI neuronal autophagy. The results demonstrated that daily treatment with CTX attenuated TBI-induced brain edema and cognitive function deficits in rats. GLT-1 is down-regulated following TBI and this phenomenon can be reversed by treatment of CTX. In addition, we also found that CTX significantly reduced autophagy marker protein, LC3 II, in hippocampus compared to the TBI group. These results suggest that CTX might provide a new therapeutic strategy for TBI and this protection might be associated with up-regulation of GLT-1 and suppression of neuronal autophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Luo CL, Li BX, Chen XP et al (2011) Autophagy is involved in traumatic brain injury-induced cell death and contributes to functional outcome deficits in mice. Neuroscience 184:54–63

    Article  CAS  PubMed  Google Scholar 

  2. Uryu K, Laurer H, McIntosh T et al (2002) Repetitive mild brain trauma accelerates Aβ deposition, lipid peroxidation, and cognitive impairment in a transgenic mouse model of Alzheimer amyloidosis. J Neurosc 22:446–454

    CAS  Google Scholar 

  3. Fairman W, Amara S (1999) Functional diversity of excitatory amino acid transporters: ion channel and transport modes. Am J Physiol Renal Physiol 277:F481–F486

    CAS  Google Scholar 

  4. Kim K, Lee SG, Kegelman TP et al (2011) Role of excitatory amino acid transporter-2 (EAAT2) and glutamate in neurodegeneration: opportunities for developing novel therapeutics. J Cell Physiol 226:2484–2493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Maragakis NJ, Dietrich J, Wong V et al (2004) Glutamate transporter expression and function in human glial progenitors. Glia 45:133–143

    Article  PubMed  Google Scholar 

  6. Rothstein JD, Patel S, Regan MR et al (2005) β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433:73–77

    Article  CAS  PubMed  Google Scholar 

  7. Rasmussen B, Unterwald EM, Rawls SM (2011) Glutamate transporter subtype 1 (GLT-1) activator ceftriaxone attenuates amphetamine-induced hyperactivity and behavioral sensitization in rats. Drug Alcohol Depend 118:484–488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Mimura K, Tomimatsu T, Minato K et al (2011) Ceftriaxone preconditioning confers neuroprotection in neonatal rats through glutamate transporter 1 upregulation. Reprod Sci 18:1193–1201

    Article  CAS  PubMed  Google Scholar 

  9. Ramos KM, Lewis MT, Morgan KN et al (2010) Spinal upregulation of glutamate transporter GLT-1 by ceftriaxone: therapeutic efficacy in a range of experimental nervous system disorders. Neuroscience 169:1888–1900

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Ketheeswaranathan P, Turner NA, Spary EJ, Batten TFC, McColl BW, Saha S (2011) Changes in glutamate transporter expression in mouse forebrain areas following focal ischemia. Brain Res 1418:93–103

    Article  CAS  PubMed  Google Scholar 

  11. Verma R, Mishra V, Sasmal D, Raghubir R (2010) Pharmacological evaluation of glutamate transporter 1 (GLT-1) mediated neuroprotection following cerebral ischemia/reperfusion injury. Eur J Pharmacol 638:65–71

    Article  CAS  PubMed  Google Scholar 

  12. Pozuelo-Rubio M (2011) 14-3-3ζ binds class III phosphatidylinositol-3-kinase and inhibits autophagy. Autophagy 7:240–242

    Article  PubMed  Google Scholar 

  13. Chu CT (2008) Eaten alive. Autophagy and neuronal cell death after hypoxia-ischemia. Am J Pathol 172:284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Lai Y, Hickey RW, Yaming Chen HB (2007) Autophagy is increased after traumatic brain injury in mice and is partially inhibited by the antioxidant γ-glutamylcysteinyl ethyl ester. J Cereb Blood Flow Metab 28:540–550

    Article  PubMed  Google Scholar 

  15. Shi R, Weng J, Zhao L, Li XM, Gao TM, Kong J (2012) Excessive autophagy contributes to neuron death in cerebral ischemia. CNS Neurosci Ther 18:250–260

    Article  CAS  PubMed  Google Scholar 

  16. Marmarou A, Foda MAAE, Brink W, Campbell J, Kita H, Demetriadou K (1994) A new model of diffuse brain injury in rats. J Neurosurg 80:291–300

    Article  CAS  PubMed  Google Scholar 

  17. Tang J, Liu J, Zhou C et al (2004) MMP-9 deficiency enhances collagenase-induced intracerebral hemorrhage and brain injury in mutant mice. J Cereb Blood Flow Metab 24:1133–1145

    Article  PubMed  Google Scholar 

  18. Hui-guo L, Kui L, Yan-ning Z, Yong-jian X (2010) Apocynin attenuate spatial learning deficits and oxidative responses to intermittent hypoxia. Sleep Med 11:205–212

    Article  PubMed  Google Scholar 

  19. Song S, Gao J, Wang K et al (2013) Attenuation of brain edema and spatial learning deficits by the inhibition of NADPH oxidase activity using apocynin following diffuse traumatic brain injury in rats. Mol Med Rep 7:327–331

    CAS  PubMed  Google Scholar 

  20. Erlich S, Alexandrovich A, Shohami E, Pinkas-Kramarski R (2007) Rapamycin is a neuroprotective treatment for traumatic brain injury. Neurobiol Dis 26:86–93

    Article  CAS  PubMed  Google Scholar 

  21. Harvey BK, Airavaara M, Hinzman J et al (2011) Targeted over-expression of glutamate transporter 1 (glt-1) reduces ischemic brain injury in a rat model of stroke. PLoS ONE 6:e22135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Bredesen DE, Rao RV, Mehlen P (2006) Cell death in the nervous system. Nature 443(7113):796–802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Shacka JJ, Lu J, Xie ZL, Uchiyama Y, Roth KA, Zhang J (2007) Kainic acid induces early and transient autophagic stress in mouse hippocampus. Neurosci Lett 414:57–60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Wei J, Pan X, Pei Z et al (2012) The beta-lactam antibiotic, ceftriaxone, provides neuroprotective potential via anti-excitotoxicity and anti-inflammation response in a rat model of traumatic brain injury. J Trauma Acute Care Surg 73:654–660

    Article  CAS  PubMed  Google Scholar 

  25. Nau R, Prange H, Muth P et al (1993) Passage of cefotaxime and ceftriaxone into cerebrospinal fluid of patients with uninflamed meninges. Antimicrob Agents Chemother 37:1518–1524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Science Foundation of Hebei, China, Grant Number H2012401071.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changmeng Cui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, C., Cui, Y., Gao, J. et al. Neuroprotective effect of ceftriaxone in a rat model of traumatic brain injury. Neurol Sci 35, 695–700 (2014). https://doi.org/10.1007/s10072-013-1585-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-013-1585-4

Keywords

Navigation