Skip to main content

Advertisement

Log in

Microarray-based analysis of gene regulation by transcription factors and microRNAs in glioma

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Transcription factor (TF) and microRNA (miRNA) are two best characterized gene regulators that have been found to play an important role in gene regulation. However, high throughput screening the interaction relationships between transcription factors, microRNAs, and target genes in gliomas remains rare. Using GSE16666 and GSE13091 datasets downloaded from Gene Expression Omnibus data, we first screened the differentially expressed genes in gliomas. We explored the regulation relationship among TFs, miRNAs and target genes by different algorithms. The underlying molecular mechanisms of these crucial target genes were investigated by Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Our study has developed three regulation relationships between two TFs and three miRNAs, including TP53/hsa-mir-155, TP53/hsa-mir-125b, and KLF2/hsa-mir-126. In addition, we also constructed a regulation network of the target genes by transcription factors and miRNAs. Some of them had been demonstrated to be involved in glioma progression via various pathways. For example, ATP2B2 target gene could be regulated by has-mir-181a to involve in calcium signaling pathway. RB1 could be regulated by has-miR-26a to participate in pathways in cancer. Smad7 could be regulated by has-miR-21 via intracellular TGF-β signal transduction. We constructed a comprehensive regulatory network which was found to play an important role in gliomas progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yamanaka R (2008) Cell-and peptide-based immunotherapeutic approaches for glioma. Trends mol med 14(5):228–235

    Article  PubMed  CAS  Google Scholar 

  2. Chen K, Rajewsky N (2007) The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 8(2):93–103

    Article  PubMed  CAS  Google Scholar 

  3. Zhou Q, Wong WH (2004) CisModule: de novo discovery of cis-regulatory modules by hierarchical mixture modeling. Proc Natl Acad Sci USA 101(33):12114

    Article  PubMed  CAS  Google Scholar 

  4. Yan S, Berquin IM, Troen BR, Sloane BF (2000) Transcription of human cathepsin B is mediated by Sp1 and Ets family factors in glioma. DNA Cell Biol 19(2):79–91

    Article  PubMed  CAS  Google Scholar 

  5. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  PubMed  CAS  Google Scholar 

  6. Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65(14):6029

    Article  PubMed  CAS  Google Scholar 

  7. Gabriely G, Wurdinger T, Kesari S, Esau CC, Burchard J, Linsley PS, Krichevsky AM (2008) MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol 28(17):5369–5380

    Article  PubMed  CAS  Google Scholar 

  8. Sasayama T, Nishihara M, Kondoh T, Hosoda K, Kohmura E (2009) MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. Int J Cancer 125(6):1407–1413

    Article  PubMed  CAS  Google Scholar 

  9. Kefas B, Godlewski J, Comeau L, Li Y, Abounader R, Hawkinson M, Lee J, Fine H, Chiocca EA, Lawler S (2008) microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 68(10):3566

    Article  PubMed  CAS  Google Scholar 

  10. Su N, Wang Y, Qian M, Deng M (2010) Combinatorial regulation of transcription factors and microRNAs. BMC Syst Biol 4(1):150

    Article  PubMed  Google Scholar 

  11. Shalgi R, Lieber D, Oren M, Pilpel Y (2007) Global and local architecture of the mammalian microRNA–transcription factor regulatory network. PLoS Comput Biol 3(7):e131

    Article  PubMed  Google Scholar 

  12. Weiner A, Hughes A, Yassour M, Rando OJ, Friedman N (2010) High-resolution nucleosome mapping reveals transcription-dependent promoter packaging. Genome Res 20(1):90–100

    Article  PubMed  CAS  Google Scholar 

  13. Wurdinger T, Tannous BA, Saydam O, Skog J, Grau S, Soutschek J, Weissleder R, Breakefield XO, Krichevsky AM (2008) miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells. Cancer Cell 14(5):382–393

    Article  PubMed  CAS  Google Scholar 

  14. Matys V, Fricke E, Geffers R, Gossling E, Haubrock M, Hehl R, Hornischer K, Karas D, Kel AE, Kel-Margoulis OV et al (2003) TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res 31(1):374–378

    Article  PubMed  CAS  Google Scholar 

  15. John B, Sander C, Marks DS (2006) Prediction of human microRNA targets. Methods Mol Biol 342:101–113

    PubMed  CAS  Google Scholar 

  16. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc Ser B (Methodological):289–300

  17. Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R, Califano A (2006) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7(Suppl 1):S7

    Article  PubMed  Google Scholar 

  18. Wang J, Lu M, Qiu C, Cui Q (2010) TransmiR: a transcription factor-microRNA regulation database. Nucleic Acids Res 38(Database issue):D119-122

    Google Scholar 

  19. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT et al (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25(1):25–29

    Article  PubMed  CAS  Google Scholar 

  20. Kanehisa M (2002) The KEGG database. Novartis Found Symp 247:91–101 discussion 101–103, 119–128, 244–152

    Article  PubMed  CAS  Google Scholar 

  21. Suh SS, Yoo JY, Nuovo GJ, Jeon YJ, Kim S, Lee TJ, Kim T, Bakàcs A, Alder H, Kaur B (2012) MicroRNAs/TP53 feedback circuitry in glioblastoma multiforme. Proc Natl Acad Sci 109(14):5316–5321

    Article  PubMed  CAS  Google Scholar 

  22. D’Urso PI, D’Urso OF, Storelli C, Mallardo M, Gianfreda CD, Montinaro A, Cimmino A, Pietro C, Marsigliante S (2012) miR-155 is up-regulated in primary and secondary glioblastoma and promotes tumour growth by inhibiting GABA receptors. Int j oncol 41(1):228–234

    PubMed  Google Scholar 

  23. Cobbs CS, Whisenhunt TR, Wesemann DR, Harkins LE, Van Meir EG, Samanta M (2003) Inactivation of wild-type p53 protein function by reactive oxygen and nitrogen species in malignant glioma cells. Cancer Res 63(24):8670

    PubMed  CAS  Google Scholar 

  24. Gong H, Liu CM, Liu DP, Liang CC (2005) The role of small RNAs in human diseases: potential troublemaker and therapeutic tools. Med Res Rev 25(3):361–381

    Article  PubMed  CAS  Google Scholar 

  25. Xia HF, He TZ, Liu CM, Cui Y, Song PP, Jin XH, Ma X (2009) MiR-125b expression affects the proliferation and apoptosis of human glioma cells by targeting Bmf. Cell Physiol Biochem 23(4–6):347–358

    Article  PubMed  CAS  Google Scholar 

  26. Le MTN, Teh C, Shyh-Chang N, Xie H, Zhou B, Korzh V, Lodish HF, Lim B (2009) MicroRNA-125b is a novel negative regulator of p53. Genes Dev 23(7):862–876

    Article  PubMed  CAS  Google Scholar 

  27. Feng J, Kim ST, Liu W, Kim JW, Zhang Z, Zhu Y, Berens M, Sun J, Xu J (2012) An integrated analysis of germline and somatic, genetic and epigenetic alterations at 9p21. 3 in glioblastoma. Cancer 118(1):232–240

    Article  PubMed  CAS  Google Scholar 

  28. Harris TA, Yamakuchi M, Kondo M, Oettgen P, Lowenstein CJ (2010) Ets-1 and Ets-2 regulate the expression of microRNA-126 in endothelial cells. Arterioscler Thromb Vasc Biol 30(10):1990–1997

    Article  PubMed  CAS  Google Scholar 

  29. Monteith GR, McAndrew D, Faddy HM, Roberts-Thomson SJ (2007) Calcium and cancer: targeting Ca2+transport. Nat Rev Cancer 7(7):519–530

    Article  PubMed  CAS  Google Scholar 

  30. Kovacs GG, Zsembery A, Anderson SJ, Komlosi P, Gillespie GY, Bell PD, Benos DJ, Fuller CM (2005) Changes in intracellular Ca2+ and pH in response to thapsigargin in human glioblastoma cells and normal astrocytes. Am J Physiol Cell Physiol 289(2):C361–C371

    Article  PubMed  CAS  Google Scholar 

  31. Chen YJ, Lin JK, Lin-Shiau SY (1999) Proliferation arrest and induction of CDK inhibitors p21 and p27 by depleting the calcium store in cultured C6 glioma cells. Eur J Cell Biol 78(11):824–831

    Article  PubMed  CAS  Google Scholar 

  32. Guimaraes-Sternberg C, Meerson A, Shaked I, Soreq H (2006) MicroRNA modulation of megakaryoblast fate involves cholinergic signaling. Leuk Res 30(5):583–595

    Article  PubMed  CAS  Google Scholar 

  33. Harbour JW, Dean DC (2000) Rb function in cell-cycle regulation and apoptosis. Nat Cell Biol 2(4):E65–E67

    Article  PubMed  CAS  Google Scholar 

  34. Nakamura M, Yonekawa Y, Kleihues P, Ohgaki H (2001) Promoter hypermethylation of the RB1 gene in glioblastomas. Lab Invest 81(1):77–82

    Article  PubMed  CAS  Google Scholar 

  35. Mathivanan J, Rohini K, Gope ML, Anandh B, Gope R (2007) Altered structure and deregulated expression of the tumor suppressor gene retinoblastoma (RB1) in human brain tumors. Mol Cell Biochem 302(1):67–77

    Article  PubMed  CAS  Google Scholar 

  36. Kim H, Huang W, Jiang X, Pennicooke B, Park PJ, Johnson MD (2010) Integrative genome analysis reveals an oncomir/oncogene cluster regulating glioblastoma survivorship. Proc Natl Acad Sci 107(5):2183–2188

    Article  PubMed  CAS  Google Scholar 

  37. Seoane J, Le HV, Shen L, Anderson SA, Massagué J (2004) Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117(2):211–223

    Article  PubMed  CAS  Google Scholar 

  38. Piek E, Westermark U, Kastemar M, Heldin CH, van Zoelen E, Nistér M, Ten Dijke P (1999) Expression of transforming-growth-factor (TGF)-β receptors and Smad proteins in glioblastoma cell lines with distinct responses to TGF-β1. Int J Cancer 80(5):756–763

    Article  PubMed  CAS  Google Scholar 

  39. Papagiannakopoulos T, Shapiro A, Kosik KS (2008) MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res 68(19):8164

    Article  PubMed  CAS  Google Scholar 

  40. Liu G, Friggeri A, Yang Y, Milosevic J, Ding Q, Thannickal VJ, Kaminski N, Abraham E (2010) miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med 207(8):1589–1597

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TXT 17 kb)

Supplementary material 2 (TXT 0 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, J., Cai, X., He, J. et al. Microarray-based analysis of gene regulation by transcription factors and microRNAs in glioma. Neurol Sci 34, 1283–1289 (2013). https://doi.org/10.1007/s10072-012-1228-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-012-1228-1

Keywords

Navigation