Skip to main content

Advertisement

Log in

Involvement of endothelial-derived relaxing factors in the regulation of cerebral blood flow

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Despite numerous researches and advances in the present times, delayed cerebral vasospasm remains a severe complication leading to a high mortality and morbidity in patients with subarachnoid hemorrhage (SAH). Since the discovery of endothelium-derived relaxing factor (EDRF) in 1980, its role in delayed cerebral vasospasm after SAH has been widely investigated as well as in regulation of basic cerebral blood flow, pathophysiology of vasoconstriction and application on prevention and treatment of cerebral vasospasm. Among all the EDRFs, nitric oxide has caught the most attention, and the other substances which display similar properties with characteristics of EDRF such as carbon monoxide (CO), hydrogen sulfide (H2S), hydrogen peroxide (H2O2), potassium ion (K+) and methane (CH4) have also evoked great interest in the research field. This review provides an overview of recent advances in investigations on the involvement of EDRFs in the regulation of cerebral blood flow, especially in cerebral vasospasm after SAH. Possible therapeutic measures and potential clinical implications for cerebral vasospasm are also summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288(5789):373–376

    Article  PubMed  CAS  Google Scholar 

  2. Husain M, Moss J (1988) Endothelium-dependent vascular smooth muscle control. J Clin Anesth 1(2):135–145

    Article  PubMed  CAS  Google Scholar 

  3. Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327(6122):524–526

    Article  PubMed  CAS  Google Scholar 

  4. Toda N, Ayajiki K, Okamura T (2009) Cerebral blood flow regulation by nitric oxide in neurological disorders. Can J Physiol Pharmacol 87(8):581–594

    Article  PubMed  CAS  Google Scholar 

  5. Daneshtalab N, Smeda JS (2010) Alterations in the modulation of cerebrovascular tone and blood flow by nitric oxide synthases in SHRsp with stroke. Cardiovasc Res 86(1):160–168

    PubMed  CAS  Google Scholar 

  6. Samdani AF, Dawson TM, Dawson VL (1997) Nitric oxide synthase in models of focal ischemia. Stroke 28(6):1283–1288

    Article  PubMed  CAS  Google Scholar 

  7. Bredt DS (1999) Endogenous nitric oxide synthesis: biological functions and pathophysiology. Free Radic Res 31(6):577–596

    Article  PubMed  CAS  Google Scholar 

  8. Koehler RC, Traystman RJ (2002) Cerebrovascular effects of carbon monoxide. Antioxid Redox Signal 4(2):279–290

    Article  PubMed  CAS  Google Scholar 

  9. Kanu A, Whitfield J, Leffler CW (2006) Carbon monoxide contributes to hypotension-induced cerebrovascular vasodilation in piglets. Am J Physiol Heart Circ Physiol 291(5):H2409–H2414

    Article  PubMed  CAS  Google Scholar 

  10. Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S, Snyder SH, Wang R (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322(5901):587–590

    Article  PubMed  CAS  Google Scholar 

  11. Zoccali C, Catalano C, Rastelli S (2009) Blood pressure control: hydrogen sulfide, a new gasotransmitter, takes stage. Nephrol Dial Transplant 24(5):1394–1396

    Article  PubMed  Google Scholar 

  12. Capettini LS, Cortes SF, Gomes MA, Silva GA, Pesquero JL, Lopes MJ, Teixeira MM, Lemos VS (2008) Neuronal nitric oxide synthase-derived hydrogen peroxide is a major endothelium-dependent relaxing factor. Am J Physiol Heart Circ Physiol 295(6):H2503–H2511

    Article  PubMed  CAS  Google Scholar 

  13. McGuire JJ, Ding H, Triggle CR (2001) Endothelium-derived relaxing factors: a focus on endothelium-derived hyperpolarizing factor(s). Can J Physiol Pharmacol 79(6):443–470

    Article  PubMed  CAS  Google Scholar 

  14. Savage D, Perkins J, Hong Lim C, Bund SJ (2003) Functional evidence that K+ is the non-nitric oxide, non-prostanoid endothelium-derived relaxing factor in rat femoral arteries. Vascul Pharmacol 40(1):23–28

    Article  PubMed  CAS  Google Scholar 

  15. Ghyczy M, Torday C, Boros M (2003) Simultaneous generation of methane, carbon dioxide, and carbon monoxide from choline and ascorbic acid: a defensive mechanism against reductive stress? FASEB J 17(9):1124–1126

    PubMed  CAS  Google Scholar 

  16. Stapf C, Mohr J (2004) Aneurysms and subarachnoid hemorrhage epidemiology. In: LeRoux PD, Winn HR, Newell DW (eds) Management of Cerebral Aneurysms. WB Saunders, Philadelphia, pp 183–187

    Google Scholar 

  17. Liu X, Miller MJ, Joshi MS, Sadowska-Krowicka H, Clark DA, Lancaster JR Jr (1998) Diffusion-limited reaction of free nitric oxide with erythrocytes. J Biol Chem 273(30):18709–18713

    Article  PubMed  CAS  Google Scholar 

  18. Toda N, Ayajiki K, Okamura T (2009) Cerebral blood flow regulation by nitric oxide: recent advances. Pharmacol Rev 61(1):62–97

    Article  PubMed  CAS  Google Scholar 

  19. Pluta RM (2005) Delayed cerebral vasospasm and nitric oxide: review, new hypothesis, and proposed treatment. Pharmacol Ther 105(1):23–56

    Article  PubMed  CAS  Google Scholar 

  20. Lowenstein CJ, Snyder SH (1992) Nitric oxide, a novel biologic messenger. Cell 70(5):705–707

    Article  PubMed  CAS  Google Scholar 

  21. Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43(2):109–142

    PubMed  CAS  Google Scholar 

  22. Waldman SA, Murad F (1987) Cyclic GMP synthesis and function. Pharmacol Rev 39(3):163–196

    PubMed  CAS  Google Scholar 

  23. Cohen RA, Adachi T (2006) Nitric-oxide-induced vasodilatation: regulation by physiologic s-glutathiolation and pathologic oxidation of the sarcoplasmic endoplasmic reticulum calcium ATPase. Trends Cardiovasc Med 16(4):109–114

    Article  PubMed  CAS  Google Scholar 

  24. Plane F, Wiley KE, Jeremy JY, Cohen RA, Garland CJ (1998) Evidence that different mechanisms underlie smooth muscle relaxation to nitric oxide and nitric oxide donors in the rabbit isolated carotid artery. Br J Pharmacol 123(7):1351–1358

    Article  PubMed  CAS  Google Scholar 

  25. Kinoshita H, Ishikawa T, Hatano Y (2000) Role of K+ channels in augmented relaxations to sodium nitroprusside induced by mexiletine in rat aortas. Anesthesiology 92(3):813–820

    Article  PubMed  CAS  Google Scholar 

  26. Faraci FM (1990) Role of nitric oxide in regulation of basilar artery tone in vivo. Am J Physiol 259(4 Pt 2):H1216–H1221

    PubMed  CAS  Google Scholar 

  27. Park L, Gallo EF, Anrather J, Wang G, Norris EH, Paul J, Strickland S, Iadecola C (2008) Key role of tissue plasminogen activator in neurovascular coupling. Proc Natl Acad Sci USA 105(3):1073–1078

    Article  PubMed  CAS  Google Scholar 

  28. Baron A, Hommet Y, Casse F, Vivien D (2010) Tissue-type plasminogen activator induces plasmin-dependent proteolysis of intracellular neuronal nitric oxide synthase. Biol Cell 102(10):539–547

    Article  PubMed  CAS  Google Scholar 

  29. Martin W, Villani GM, Jothianandan D, Furchgott RF (1985) Selective blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation by hemoglobin and by methylene blue in the rabbit aorta. J Pharmacol Exp Ther 232(3):708–716

    PubMed  CAS  Google Scholar 

  30. Ignarro LJ (2002) Nitric oxide as a unique signaling molecule in the vascular system: a historical overview. J Physiol Pharmacol 53(4 Pt 1):503–514

    PubMed  CAS  Google Scholar 

  31. Sobey CG (2001) Cerebrovascular dysfunction after subarachnoid haemorrhage: novel mechanisms and directions for therapy. Clin Exp Pharmacol Physiol 28(11):926–929

    Article  PubMed  CAS  Google Scholar 

  32. Jung CS, Iuliano BA, Harvey-White J, Espey MG, Oldfield EH, Pluta RM (2004) Association between cerebrospinal fluid levels of asymmetric dimethyl-l-arginine, an endogenous inhibitor of endothelial nitric oxide synthase, and cerebral vasospasm in a primate model of subarachnoid hemorrhage. J Neurosurg 101(5):836–842

    Article  PubMed  CAS  Google Scholar 

  33. Clark JF, Sharp FR (2006) Bilirubin oxidation products (BOXes) and their role in cerebral vasospasm after subarachnoid hemorrhage. J Cereb Blood Flow Metab 26(10):1223–1233

    Article  PubMed  CAS  Google Scholar 

  34. Wurster WL, Pyne-Geithman GJ, Peat IR, Clark JF (2008) Bilirubin oxidation products (BOXes): synthesis, stability and chemical characteristics. Acta Neurochir Suppl 104:43–50

    Article  PubMed  CAS  Google Scholar 

  35. Toda N, Okamura T (2003) The pharmacology of nitric oxide in the peripheral nervous system of blood vessels. Pharmacol Rev 55(2):271–324

    Article  PubMed  CAS  Google Scholar 

  36. Iadecola C, Zhang F, Casey R, Nagayama M, Ross ME (1997) Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J Neurosci 17(23):9157–9164

    PubMed  CAS  Google Scholar 

  37. Vellimana AK, Milner E, Azad TD, Harries MD, Zhou ML, Gidday JM, Han BH, Zipfel GJ (2011) Endothelial nitric oxide synthase mediates endogenous protection against subarachnoid hemorrhage-induced cerebral vasospasm. Stroke 42(3):776–782

    Article  PubMed  CAS  Google Scholar 

  38. Pluta RM (2006) Dysfunction of nitric oxide synthases as a cause and therapeutic target in delayed cerebral vasospasm after SAH. Neurol Res 28(7):730–737

    Article  PubMed  CAS  Google Scholar 

  39. Ozum U, Aslan A, Karadag O, Gurelik M, Tas A, Zafer Kars H (2007) Intracisternal versus intracarotid infusion of l-arginine in experimental cerebral vasospasm. J Clin Neurosci 14(6):556–562

    Article  PubMed  CAS  Google Scholar 

  40. Pluta RM, Afshar JK, Thompson BG, Boock RJ, Harvey-White J, Oldfield EH (2000) Increased cerebral blood flow but no reversal or prevention of vasospasm in response to l-arginine infusion after subarachnoid hemorrhage. J Neurosurg 92(1):121–126

    Article  PubMed  CAS  Google Scholar 

  41. Sun BL, Zhang SM, Xia ZL, Yang MF, Yuan H, Zhang J, Xiu RJ (2003) l-arginine improves cerebral blood perfusion and vasomotion of microvessels following subarachnoid hemorrhage in rats. Clin Hemorheol Microcirc 29(3–4):391–400

    PubMed  CAS  Google Scholar 

  42. Ito Y, Isotani E, Mizuno Y, Azuma H, Hirakawa K (2000) Effective improvement of the cerebral vasospasm after subarachnoid hemorrhage with low-dose nitroglycerin. J Cardiovasc Pharmacol 35(1):45–50

    Article  PubMed  CAS  Google Scholar 

  43. Kistler JP, Lees RS, Candia G, Zervas NT, Crowell RM, Ojemann RG (1979) Intravenous nitroglycerin in experimental cerebral vasospasm. A preliminary report. Stroke 10(1):26–29

    Article  PubMed  CAS  Google Scholar 

  44. Cosby K, Partovi KS, Crawford JH, Patel RP, Reiter CD, Martyr S, Yang BK, Waclawiw MA, Zalos G, Xu X, Huang KT, Shields H, Kim-Shapiro DB, Schechter AN, Cannon RO 3rd, Gladwin MT (2003) Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med 9(12):1498–1505

    Article  PubMed  CAS  Google Scholar 

  45. Pluta RM, Dejam A, Grimes G, Gladwin MT, Oldfield EH (2005) Nitrite infusions to prevent delayed cerebral vasospasm in a primate model of subarachnoid hemorrhage. JAMA 293(12):1477–1484

    Article  PubMed  CAS  Google Scholar 

  46. Raub JA, Benignus VA (2002) Carbon monoxide and the nervous system. Neurosci Biobehav Rev 26(8):925–940

    Article  PubMed  CAS  Google Scholar 

  47. Maines MD (1997) The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol 37:517–554

    Article  PubMed  CAS  Google Scholar 

  48. Christodoulides N, Durante W, Kroll MH, Schafer AI (1995) Vascular smooth muscle cell heme oxygenases generate guanylyl cyclase-stimulatory carbon monoxide. Circulation 91(9):2306–2309

    PubMed  CAS  Google Scholar 

  49. Zakhary R, Gaine SP, Dinerman JL, Ruat M, Flavahan NA, Snyder SH (1996) Heme oxygenase 2: endothelial and neuronal localization and role in endothelium-dependent relaxation. Proc Natl Acad Sci USA 93(2):795–798

    Article  PubMed  CAS  Google Scholar 

  50. Leffler CW, Nasjletti A, Yu C, Johnson RA, Fedinec AL, Walker N (1999) Carbon monoxide and cerebral microvascular tone in newborn pigs. Am J Physiol 276(5 Pt 2):H1641–H1646

    PubMed  CAS  Google Scholar 

  51. Wang R, Wang Z, Wu L (1997) Carbon monoxide-induced vasorelaxation and the underlying mechanisms. Br J Pharmacol 121(5):927–934

    Article  PubMed  CAS  Google Scholar 

  52. Komuro T, Borsody MK, Ono S, Marton LS, Weir BK, Zhang ZD, Paik E, Macdonald RL (2001) The vasorelaxation of cerebral arteries by carbon monoxide. Exp Biol Med (Maywood) 226(9):860–865

    CAS  Google Scholar 

  53. Jaggar JH, Leffler CW, Cheranov SY, Tcheranova DES, Cheng X (2002) Carbon monoxide dilates cerebral arterioles by enhancing the coupling of Ca2+ sparks to Ca2+-activated K+ channels. Circ Res 91(7):610–617

    Article  PubMed  CAS  Google Scholar 

  54. Mendelman A, Zarchin N, Rifkind J, Mayevsky A (2000) Brain multiparametric responses to carbon monoxide exposure in the aging rat. Brain Res 867(1–2):217–222

    Article  PubMed  CAS  Google Scholar 

  55. Botros FT, Prieto-Carrasquero MC, Martin VL, Navar LG (2008) Heme oxygenase induction attenuates afferent arteriolar autoregulatory responses. Am J Physiol Renal Physiol 295(4):F904–F911

    Article  PubMed  CAS  Google Scholar 

  56. Ono S, Zhang ZD, Marton LS, Yamini B, Windmeyer E, Johns L, Kowalczuk A, Lin G, Macdonald RL (2000) Heme oxygenase-1 and ferritin are increased in cerebral arteries after subarachnoid hemorrhage in monkeys. J Cereb Blood Flow Metab 20(7):1066–1076

    Article  PubMed  CAS  Google Scholar 

  57. Turner CP, Bergeron M, Matz P, Zegna A, Noble LJ, Panter SS, Sharp FR (1998) Heme oxygenase-1 is induced in glia throughout brain by subarachnoid hemoglobin. J Cereb Blood Flow Metab 18(3):257–273

    Article  PubMed  CAS  Google Scholar 

  58. Matz PG, Massa SM, Weinstein PR, Turner C, Panter SS, Sharp FR (1996) Focal hyperexpression of hemeoxygenase-1 protein and messenger RNA in rat brain caused by cellular stress following subarachnoid injections of lysed blood. J Neurosurg 85(5):892–900

    Article  PubMed  CAS  Google Scholar 

  59. Wagner F, Asfar P, Calzia E, Radermacher P, Szabo C (2009) Bench-to-bedside review: hydrogen sulfide—the third gaseous transmitter: applications for critical care. Crit Care 13(3):213

    Article  PubMed  Google Scholar 

  60. Mancardi D, Penna C, Merlino A, Del Soldato P, Wink DA, Pagliaro P (2009) Physiological and pharmacological features of the novel gasotransmitter: hydrogen sulfide. Biochim Biophys Acta 1787(7):864–872

    Google Scholar 

  61. Dominy JE, Stipanuk MH (2004) New roles for cysteine and transsulfuration enzymes: production of H2S, a neuromodulator and smooth muscle relaxant. Nutr Rev 62(9):348–353

    PubMed  Google Scholar 

  62. Cheng Y, Ndisang JF, Tang G, Cao K, Wang R (2004) Hydrogen sulfide-induced relaxation of resistance mesenteric artery beds of rats. Am J Physiol Heart Circ Physiol 287(5):H2316–H2323

    Article  PubMed  CAS  Google Scholar 

  63. Zhao W, Zhang J, Lu Y, Wang R (2001) The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. EMBO J 20(21):6008–6016

    Article  PubMed  CAS  Google Scholar 

  64. Zhao W, Wang R (2002) H(2)S-induced vasorelaxation and underlying cellular and molecular mechanisms. Am J Physiol Heart Circ Physiol 283(2):H474–H480

    PubMed  CAS  Google Scholar 

  65. Hosoki R, Matsuki N, Kimura H (1997) The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 237(3):527–531

    Article  PubMed  CAS  Google Scholar 

  66. Iida Y, Katusic ZS (2000) Mechanisms of cerebral arterial relaxations to hydrogen peroxide. Stroke 31(9):2224–2230

    Article  PubMed  CAS  Google Scholar 

  67. Barlow RS, White RE (1998) Hydrogen peroxide relaxes porcine coronary arteries by stimulating BKCa channel activity. Am J Physiol 275(4 Pt 2):H1283–H1289

    PubMed  CAS  Google Scholar 

  68. Barlow RS, El-Mowafy AM, White RE (2000) H(2)O(2) opens BK(Ca) channels via the PLA(2)-arachidonic acid signaling cascade in coronary artery smooth muscle. Am J Physiol Heart Circ Physiol 279(2):H475–H483

    PubMed  CAS  Google Scholar 

  69. Bychkov R, Pieper K, Ried C, Milosheva M, Bychkov E, Luft FC, Haller H (1999) Hydrogen peroxide, potassium currents, and membrane potential in human endothelial cells. Circulation 99(13):1719–1725

    PubMed  CAS  Google Scholar 

  70. Ji G, O’Brien CD, Feldman M, Manevich Y, Lim P, Sun J, Albelda SM, Kotlikoff MI (2002) PECAM-1 (CD31) regulates a hydrogen peroxide-activated nonselective cation channel in endothelial cells. J Cell Biol 157(1):173–184

    Article  PubMed  CAS  Google Scholar 

  71. Weyer GW, Jahromi BS, Aihara Y, Agbaje-Williams M, Nikitina E, Zhang ZD, Macdonald RL (2006) Expression and function of inwardly rectifying potassium channels after experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 26(3):382–391

    Article  PubMed  CAS  Google Scholar 

  72. Zuccarello M, Bonasso CL, Lewis AI, Sperelakis N, Rapoport RM (1996) Relaxation of subarachnoid hemorrhage-induced spasm of rabbit basilar artery by the K+ channel activator cromakalim. Stroke 27(2):311–316

    Article  PubMed  CAS  Google Scholar 

  73. Kwan AL, Lin CL, Yanamoto H, Howng SL, Kassell NF, Lee KS (1998) Systemic administration of the potassium channel activator cromakalim attenuates cerebral vasospasm after experimental subarachnoid hemorrhage. Neurosurgery 42(2):347–350 discussion 350–351

    Article  PubMed  CAS  Google Scholar 

  74. Kwan AL, Lin CL, Wu CS, Chen EF, Howng SL, Kassell NF, Lee KS (2000) Delayed administration of the K+ channel activator cromakalim attenuates cerebral vasospasm after experimental subarachnoid hemorrhage. Acta Neurochir (Wien) 142(2):193–197

    Article  CAS  Google Scholar 

  75. Omeis I, Chen W, Jhanwar-Uniyal M, Rozental R, Murali R, Abrahams JM (2009) Prevention of cerebral vasospasm by local delivery of cromakalim with a biodegradable controlled-release system in a rat model of subarachnoid hemorrhage. J Neurosurg 110(5):1015–1020

    Article  PubMed  CAS  Google Scholar 

  76. Jahromi BS, Aihara Y, Ai J, Zhang ZD, Weyer G, Nikitina E, Yassari R, Houamed KM, Macdonald RL (2008) Preserved BK channel function in vasospastic myocytes from a dog model of subarachnoid hemorrhage. J Vasc Res 45(5):402–415

    Article  PubMed  CAS  Google Scholar 

  77. Jahromi BS, Aihara Y, Ai J, Zhang ZD, Nikitina E, Macdonald RL (2008) Voltage-gated K+ channel dysfunction in myocytes from a dog model of subarachnoid hemorrhage. J Cereb Blood Flow Metab 28(4):797–811

    Article  PubMed  CAS  Google Scholar 

  78. Link TE, Murakami K, Beem-Miller M, Tranmer BI, Wellman GC (2008) Oxyhemoglobin-induced expression of R-type Ca2+ channels in cerebral arteries. Stroke 39(7):2122–2128

    Article  PubMed  CAS  Google Scholar 

  79. Wellman GC (2006) Ion channels and calcium signaling in cerebral arteries following subarachnoid hemorrhage. Neurol Res 28(7):690–702

    Article  PubMed  CAS  Google Scholar 

  80. Thauer RK (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture. Microbiology 144(Pt 9):2377–2406

    Article  PubMed  CAS  Google Scholar 

  81. Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6(8):579–591

    Article  PubMed  CAS  Google Scholar 

  82. Ghyczy M, Torday C, Kaszaki J, Szabo A, Czobel M, Boros M (2008) Hypoxia-induced generation of methane in mitochondria and eukaryotic cells: an alternative approach to methanogenesis. Cell Physiol Biochem 21(1–3):251–258

    Article  PubMed  CAS  Google Scholar 

  83. Badaro RM, Koziol JE, Peyman GA (1989) Methane plasma as a protective coating on intraocular lenses: an in vitro study. Int Ophthalmol 13(5):357–360

    Article  PubMed  CAS  Google Scholar 

  84. Ostrowski RP, Colohan AR, Zhang JH (2006) Molecular mechanisms of early brain injury after subarachnoid hemorrhage. Neurol Res 28(4):399–414

    Article  PubMed  CAS  Google Scholar 

  85. Dumont AS, Dumont RJ, Chow MM, Lin CL, Calisaneller T, Ley KF, Kassell NF, Lee KS (2003) Cerebral vasospasm after subarachnoid hemorrhage: putative role of inflammation. Neurosurgery 53(1):123–133 discussion 133–135

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from Jiangsu Natural Science Foundation (NO. BK2007153). Dr Meng QI was partly supported by a scholarship from the China Scholarship Council (scholarship no. 2008619102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jixin Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, M., Hang, C., Zhu, L. et al. Involvement of endothelial-derived relaxing factors in the regulation of cerebral blood flow. Neurol Sci 32, 551–557 (2011). https://doi.org/10.1007/s10072-011-0622-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-011-0622-4

Keywords

Navigation