Skip to main content
Log in

Modularity of mind and the role of incentive motivation in representing novelty

  • Review
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

Animal and human brains contain a myriad of mental representations that have to be successfully tracked within fractions of a second in a large number of situations. This retrieval process is hard to explain without postulating the massive modularity of cognition. Assuming that the mind is massively modular, it is then necessary to understand how cognitive modules can efficiently represent dynamic environments—in which some modules may have to deal with change-induced novelty and uncertainty. Novelty of a stimulus is a problem for a module when unknown, significant stimuli do not satisfy the module’s processing criteria—or domain specificity—and cannot therefore be included in its database. It is suggested that the brain mechanisms of incentive motivation, recruited when faced with novelty and uncertainty, induce transient variations in the domain specificity of cognitive modules in order to allow them to process information they were not prepared to learn. It is hypothesised that the behavioural transitions leading from exploratory activity to habit formation are correlated with (and possibly caused by) the organism’s ability to counter novelty-induced uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anselme P (2006) Opportunistic behaviour in animals and robots. J Exp Theor Artif Int 18:1–15

    Article  Google Scholar 

  • Anselme P (2010) The uncertainty processing theory of motivation. Behav Brain Res 208:291–310

    Article  PubMed  Google Scholar 

  • Ashby FG, Turner BO, Horvitz JC (2010) Cortical and basal ganglia contributions to habit learning and automaticity. Trends Cogn Sci 14:208–215

    Article  PubMed  Google Scholar 

  • Atkinson AP, Wheeler M (2004) The grain of domains: the evolutionary-psychological case against domain-general cognition. Mind Lang 19:147–176

    Google Scholar 

  • Balleine BW (1992) Instrumental performance following a shift in primary motivation depends on incentive learning. J Exp Psychol Anim Behav Process 18:236–250

    Article  PubMed  CAS  Google Scholar 

  • Balleine BW, Dickinson A (1998a) The role of incentive learning in instrumental outcome revaluation by sensory-specific satiety. Anim Learn Behav 26:46–59

    Article  Google Scholar 

  • Balleine BW, Dickinson A (1998b) Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacol 37:407–419

    Article  CAS  Google Scholar 

  • Balleine BW, O’Doherty JP (2010) Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual actions. Neuropsychopharmacol 35:48–69

    Article  Google Scholar 

  • Balleine BW, Liljeholm M, Ostlund SB (2009) The integrative function of the basal ganglia in instrumental conditioning. Behav Brain Res 199:43–52

    Article  PubMed  Google Scholar 

  • Bardo MT, Donohew RL, Harrington NG (1996) Psychobiology of novelty-seeking and drug-seeking behavior. Behav Brain Res 77:23–43

    Article  PubMed  CAS  Google Scholar 

  • Barrett HC, Kurzban R (2006) Modularity in cognition: framing the debate. Psychol Rev 113:628–647

    Article  PubMed  Google Scholar 

  • Belin D, Everitt BJ (2008) Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron 57:432–441

    Article  PubMed  CAS  Google Scholar 

  • Berlyne DE (1960) Conflict, arousal, and curiosity. McGraw-Hill Book Company, New York

    Book  Google Scholar 

  • Berridge KC (2004) Motivation concepts in behavioral neuroscience. Physiol Behav 81:179–209

    Article  PubMed  CAS  Google Scholar 

  • Berridge KC (2007) The debate over dopamine’s role in reward: the case of incentive salience. Psychopharmacology 19:391–431

    Article  CAS  Google Scholar 

  • Bindra D (1978) How adaptive behavior is produced: a perceptual-motivational alternative to response-reinforcement. Behav Brain Sci 1:41–91

    Article  Google Scholar 

  • Blokland A (1996) Acetylcholine: a neurotransmitter for learning and memory? Brain Res Rev 21:285–300

    Article  Google Scholar 

  • Boakes RA (1977) Performance on learning to associate a stimulus with positive reinforcement. In: Davis H, Hurwitz HMB (eds) Operant-pavlovian interactions. Lawrence Erlbaum Associates, New Jersey, pp 67–97

    Google Scholar 

  • Bolles RC (1970) Species-specific defense reactions and avoidance learning. Psychol Rev 77:32–48

    Article  Google Scholar 

  • Braun JJ (1990) Gustatory cortex: definition and function. In: Kolb B, Tees R (eds) The cerebral cortex of the rat. MIT Press, Cambridge, pp 407–430

    Google Scholar 

  • Breland K, Breland M (1961) The misbehavior of organisms. Am Psychol 16:681–684

    Article  Google Scholar 

  • Buxbaum LJ, Glosser G, Coslett HB (1996) Relative sparing of object recognition in alexia-prosopagnosia. Brain Cogn 32:202–205

    Google Scholar 

  • Cannon CM, Bseikri MR (2004) Is dopamine required for natural reward? Physiol Behav 81:741–748

    Article  PubMed  CAS  Google Scholar 

  • Carelli RM, Wolske M, West MO (1997) Loss of lever-press related firing of rat striatal forelimb neurons after repeated sessions in a lever pressing task. J Neurosci 17:1804–1814

    PubMed  CAS  Google Scholar 

  • Carruthers P (2006) The architecture of the mind. Oxford University Press, Oxford

    Book  Google Scholar 

  • Cheng K (1986) A purely geometric module in the rat’s spatial representation. Cognition 23:149–178

    Article  PubMed  CAS  Google Scholar 

  • Clark A, Karmiloff-Smith A (1993) The cognizer’s innards: a psychological and philosophical perspective on the development of thought. Mind Lang 8:487–519

    Google Scholar 

  • Coltheart M (1999) Modularity and cognition. Trends Cogn Sci 3:115–120

    Article  PubMed  Google Scholar 

  • Corbit LH, Janak PH (2010) Posterior dorsomedial striatum is critical for both selective instrumental and Pavlovian reward learning. Eur J Neurosci 31:1312–1321

    Article  PubMed  Google Scholar 

  • Cosmides L, Tooby J (2000) Evolutionary psychology and the emotions. In: Lewis M, Haviland-Jones JM (eds) Handbook of emotions. Guilford, New York, pp 91–115

    Google Scholar 

  • Coutureau E, Killcross S (2003) Inactivation of the infralimbic prefrontal cortex reinstates goal-directed responding in overtrained rats. Behav Brain Res 146:167–174

    Article  PubMed  Google Scholar 

  • Cowan P (1985) Exploration in small animals: ethology and ecology. In: Archer J, Birke L (eds) Exploration in animals and humans. Van Nostrand Reinhold Ltd, London, pp 147–175

    Google Scholar 

  • Craig W (1918) Appetites and aversions as constituents of instincts. Biol Bull 34:91–107

    Article  Google Scholar 

  • De Renzi E, Di Pellegrino G (1998) Prosopagnosia and alexia without object agnosia. Cortex 34:403–415

    Article  PubMed  Google Scholar 

  • Dennett D (1984) Cognitive wheels: the frame problem of AI. In: Hookaway C (ed) Minds, machines and evolution. Cambridge University Press, Cambridge, pp 129–151

    Google Scholar 

  • Devan BD, McDonald RJ, White NM (1999) Effects of medial and lateral caudate-putamen lesions on place- and cue-guided behaviors in the water maze: relation to thigmotaxis. Behav Brain Res 100:5–14

    Article  PubMed  CAS  Google Scholar 

  • Di Chiara G (2002) Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav Brain Res 137:75–114

    Article  PubMed  Google Scholar 

  • Dickinson A, Dawson GR (1988) Motivational control of instrumental performance: The role of prior experience of the reinforcer. Q J Exp Psychol 40B:113–134

    Google Scholar 

  • Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 11:1481–1489

    Article  CAS  Google Scholar 

  • Ewert JP (1987) Neuroethology of releasing mechanisms: prey-catching in toads. Behav Brain Sci 10:337–405

    Article  Google Scholar 

  • Fiorillo CD, Tobler PN, Schultz W (2003) Discrete coding of reward probability and uncertainty by dopamine neurons. Science 299:1898–1902

    Article  PubMed  CAS  Google Scholar 

  • Flagel SB, Clark JJ, Robinson TE, Mayo L, Czuj A, Willuhn I, Akers CA, Clinton SM, Phillips PEM, Akil H (2011) A selective role for dopamine in stimulus-reward learning. Nature 469:53–57

    Article  PubMed  CAS  Google Scholar 

  • Fodor JA (1983) The modularity of mind. The MIT Press, Cambridge

    Google Scholar 

  • Fodor J (2000) The mind doesn’t work that way: the scope and limits of computational psychology. The MIT Press, Cambridge

    Google Scholar 

  • Forkman B (1996) The foraging behaviour of Mongolian gerbils: a behavioural need or a need to know? Behaviour 133:129–143

    Article  Google Scholar 

  • Franken IHA, Hendricks VM, Stam CJ, van der Brink W (2004) A role for dopamine in the processing of drug cues in heroin dependent patients. Eur Neuropsychopharmacol 14:503–508

    Article  PubMed  CAS  Google Scholar 

  • Franken IHA, Booij J, van der Brink W (2005) The role of dopamine in human addiction: from reward to motivated attention. Eur J Pharmacol 526:199–206

    Article  PubMed  CAS  Google Scholar 

  • Gallistel CR (2000) The replacement of general-purpose learning models with adaptively specialized learning modules. In: Gazzaniga MS (ed) The cognitive neuroscience. The MIT Press, Cambridge, pp 1179–1191

    Google Scholar 

  • Gallistel CR, Gibbon J (2000) Time, rate, and conditioning. Psychol Rev 107:289–344

    Article  PubMed  CAS  Google Scholar 

  • Giovannini MG, Bartolini L, Kopf SR, Pepeu G (1998) Acetylcholine release from the frontal cortex during exploratory activity. Brain Res 784:218–227

    Article  PubMed  CAS  Google Scholar 

  • Gratton A, Wise RA (1994) Drug- and behavior-associated changes in dopamine-related electrochemical signals during intravenous cocaine self-administration in rats. J Neurosci 14:4130–4146

    PubMed  CAS  Google Scholar 

  • Green L, Myerson J (1996) Exponential versus hyperbolic discounting of delayed outcome: risk and waiting time. Am Zool 36:496–505

    Google Scholar 

  • Greenberg R (1990) Ecological plasticity, neophobia and resource use in birds. Stud Avian Biol 13:431–437

    Google Scholar 

  • Hadley RF (2003) A defence of functional modularity. Connect Sci 15:95–116

    Article  Google Scholar 

  • Hermer L, Spelke ES (1994) A geometric process for spatial reorientation in young children. Nature 370:57–59

    Article  PubMed  CAS  Google Scholar 

  • Horvitz JC (2000) Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neurosci 96:651–656

    Article  CAS  Google Scholar 

  • Howard MA, Simons DJ (1994) Physiologic effects of nucleus basalis magnetocellularis stimulation on rat barrel cortex neurons. Exp Brain Res 102:21–33

    Article  PubMed  Google Scholar 

  • Hull CL (1943) Principles of behavior. Appleton-Century-Crofts, New York

    Google Scholar 

  • Ikemoto S, Panksepp J (1999) The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Res Rev 31:6–41

    Article  PubMed  CAS  Google Scholar 

  • Inglis FM, Day JC, Fibiger HC (1994) Enhanced acetylcholine release in hippocampus and cortex during the anticipation and consumption of a palatable meal. Neuroscience 62:1049–1056

    Article  PubMed  CAS  Google Scholar 

  • Inglis IR, Forkman B, Lazarus J (1997) Free food or earned food? A review and fuzzy model of contrafreeloading. Anim Behav 53:1171–1191

    Article  PubMed  Google Scholar 

  • Jueptner M, Stephan KM, Frith CD, Brooks DJ, Frackowiak RSJ, Passingham RE (1997) Anatomy of motor learning. I. Frontal cortex and attention to action. J Neurophysiol 77:1313–1324

    PubMed  CAS  Google Scholar 

  • Juliano S, Ma W, Eslin D (1991) Cholinergic depletion prevents expansion of topographic maps in somatosensory cortex. P Natl Acad Sci USA 88:780–784

    Article  CAS  Google Scholar 

  • Kacelnik A, Bateson M (1996) Risky theories: the effects of variance on foraging decisions. Am Zool 36:402–434

    Google Scholar 

  • Kalivas PW, Duffy P (1995) Selective activation of dopamine transmission in the shell of the nucleus accumbens by stress. Brain Res 675:325–328

    Article  PubMed  CAS  Google Scholar 

  • Karmiloff-Smith A (1992) Beyond modularity: a developmental perspective in cognitive science. The MIT Press, Cambridge

    Google Scholar 

  • Kauffman NA, Herman CP, Polivy J (1995) Hunger-induced finickiness in humans. Appetite 24:203–218

    Article  PubMed  CAS  Google Scholar 

  • Kelly DM, Spetch ML, Heth CD (1998) Pigeon’s (Columba livia) encoding of geometric and featural properties of a spatial environment. J Comp Psychol 112:259–269

    Article  Google Scholar 

  • Kheramin S, Body S, Ho M-Y, Velazquez-Martinez DN, Bradshaw CM, Szabadi E, Deakin JFW, Anderson IM (2003) Role of the orbital prefrontal cortex in choice between delayed and uncertain reinforcers: a quantitative analysis. Behav Process 64:239–250

    Article  Google Scholar 

  • Kilgard MP, Merzenich MM (1998) Cortical map reorganization enabled by nucleus basalis activity. Science 279:1714–1718

    Article  PubMed  CAS  Google Scholar 

  • Kimchi EY, Laubach M (2009) The dorsomedial striatum reflects response bias during learning. J Neurosci 29:14891–14902

    Article  PubMed  CAS  Google Scholar 

  • Kiyatkin EA, Wise RA, Gratton A (1993) Drug- and behavior-associated changes in dopamine-related electrochemical signals during intravenous heroin self-administration in rats. Synapse 14:60–72

    Article  PubMed  CAS  Google Scholar 

  • Kosslyn SM (2001) The strategic eye: another look. Minds Mach 11:287–291

    Article  Google Scholar 

  • Lorenz K (1984) Les fondements de l’éthologie. Champs Flammarion, Paris

    Google Scholar 

  • Lovibond PF (1983) Facilitation of instrumental behavior by a Pavlovian appetitive conditioned stimulus. J Exp Psychol Anim Behav Process 9:225–247

    Article  PubMed  CAS  Google Scholar 

  • Mark GP, Rada P, Pothos E, Hoebel BG (1992) Effects of feeding and drinking on acetylcholine release in the nucleus accumbens, striatum, and hippocampus of freely behaving rats. J Neurochem 58:2269–2274

    Article  PubMed  CAS  Google Scholar 

  • Martel P, Fantino M (1996) Mesolimbic dopaminergic system activity as a function of food reward: a microdialysis study. Pharmacol Biochem Behav 53:221–226

    Article  PubMed  CAS  Google Scholar 

  • McCullough LD, Salamone JD (1992) Anxiogenic drugs beta-CCE and FG 7142 increase extracellular dopamine levels in nucleus accumbens. Psychopharmacology 109:379–382

    Article  PubMed  CAS  Google Scholar 

  • Menzel R, Giurfa M (2001) Cognitive architecture of a mini-brain: the honeybee. Trends Cogn Sci 5:62–71

    Article  PubMed  Google Scholar 

  • Mitchell M (1999a) Can evolution explain how the mind works? A review of the evolutionary psychology debates. Complexity 4:17–24

    Article  Google Scholar 

  • Mitchell SH (1999b) Measures of impulsivity in cigarette smokers and non-smokers. Psychopharmacology 146:455–464

    Article  PubMed  CAS  Google Scholar 

  • Miyachi S, Hikosaka O, Miyashita K, Karadi Z, Rand MK (1997) Differential roles of monkey striatum in learning of sequential hand movement. Exp Brain Res 115:1–5

    Article  PubMed  CAS  Google Scholar 

  • Mobini S, Chiang T-J, Ho M-Y, Bradshaw CM, Szabadi E (2000) Effects of central 5-hydroxytryptamine depletion on sensitivity to delayed and probabilistic reinforcement. Psychopharmacology 152:390–397

    Article  PubMed  CAS  Google Scholar 

  • Moore H, Fadel J, Sarter M, Bruno JP (1999) Role of accumbens and cortical dopamine receptors in the regulation of cortical acetylcholine release. Neuroscience 88:811–822

    Article  PubMed  CAS  Google Scholar 

  • Nelson AJD, Thur KE, Horsley RR, Spicer C, Marsden CA, Cassaday HJ (2011) Reduced dopamine function within the medial shell of the nucleus accumbens enhances latent inhibition. Pharmacol Biochem Behav 98:1–7

    Article  PubMed  CAS  Google Scholar 

  • Nieoullon A (2002) Dopamine and the regulation of cognition and attention. Prog in Neurobiol 67:53–83

    Article  CAS  Google Scholar 

  • Orsetti M, Casamenti F, Pepeu G (1996) Enhanced acetylcholine release in the hippocampus and cortex during acquisition of an operant behaviour. Brain Res 724:89–96

    Article  PubMed  CAS  Google Scholar 

  • Ostaszewski P, Green L, Myerson J (1998) Effects of inflation on the subjective value of delayed and probabilistic rewards. Psychonom Bull Rev 5:324–333

    Article  Google Scholar 

  • Packard MG, McGaugh JL (1996) Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiol Learn Mem 65:65–72

    Article  PubMed  CAS  Google Scholar 

  • Panksepp J, Panksepp JB (2000) The seven sins of evolutionary psychology. Evol Cognit 6:108–131

    Google Scholar 

  • Pecina S, Schulkin J, Berridge KC (2006) Nucleus accumbens corticotropin-releasing factor increases cue-triggered motivation for sucrose reward: paradoxical positive incentive effects in stress? BMC Biol 4:8

    Article  PubMed  CAS  Google Scholar 

  • Pinker S (1997) How the mind works. W.W. Norton, New York

    Google Scholar 

  • Pinker S (2005) So how does the mind work? Mind Lang 20:1–24

    Google Scholar 

  • Preuschoff K, Bossaerts P, Quartz SR (2006) Neural differentiation of expected reward and risk in human subcortical structures. Neuron 51:381–390

    Article  PubMed  CAS  Google Scholar 

  • Quartz SR, Sejnowski TJ (1997) The neural basis of development: a constructivist manifesto. Behav Brain Sci 20:537–596

    PubMed  CAS  Google Scholar 

  • Rachlin H, Raineri A (1992) Irrationality, impulsiveness and selfishness as discount reversal effects. In: Loewenstein G, Elster J (eds) Choice over time. Russell Sage, New York

    Google Scholar 

  • Rada P, Mark GP, Hoebel BG (1998) Dopamine in the nucleus accumbens released by hypothalamic stimulation-escape behavior. Brain Res 782:228–234

    Article  PubMed  CAS  Google Scholar 

  • Ragozzino ME (2007) The contribution of the medial prefrontal cortex, orbitofrontal cortex, and dorsomedial striatum to behavioural flexibility. Ann NY Acad Sci 1121:355–375

    Article  PubMed  Google Scholar 

  • Rand MK, Hikosaka O, Miyachi S, Lu X, Nakamura K, Kitaguchi K, Shimo Y (2000) Characteristics of sequential movements during early learning period in monkeys. Exp Brain Res 131:293–304

    Article  PubMed  CAS  Google Scholar 

  • Rasmusson DD (2000) The role of acetylcholine in cortical synaptic plasticity. Behav Brain Res 115:205–218

    Article  PubMed  CAS  Google Scholar 

  • Redgrave P, Gurney K, Reynolds J (2008) What is reinforced by phasic dopamine signals? Brain Res Rev 58:322–339

    Article  PubMed  CAS  Google Scholar 

  • Robinson TE, Berridge KC (2000) The psychology and neurobiology of addiction: an incentive-sensitization view. Addiction (Suppl.) 95:S91–S117

    Google Scholar 

  • Rostand J (1970) La vie des crapauds. Dunod, Paris

    Google Scholar 

  • Rumiati RI, Humphreys GW (1997) Visual object agnosia without alexia or prosopagnosia: arguments for separate knowledge stores. Vis Cogn 4:207–217

    Article  Google Scholar 

  • Samuels R (2005) The complexity of cognition: tractability arguments for massive modularity. In: Carruthers P, Laurence S, Stich S (eds) The innate mind: structure and content. Oxford University Press, New York, pp 107–121

    Google Scholar 

  • Sarter M, Bruno JP, Turchi J (1999) Basal forebrain afferent projections modulating cortical acetylcholine, attention, and implications for neuropsychiatric disorders. Ann NY Acad Sci 877:368–382

    Article  PubMed  CAS  Google Scholar 

  • Sarter M, Nelson CL, Bruno JP (2005) Cortical cholinergic transmission and cortical information processing in schizophrenia. Schizophrenia Bull 31:117–138

    Article  Google Scholar 

  • Sarter M, Gehring WJ, Kozak R (2006) More attention must be paid: the neurobiology of attentional effort. Brain Res Rev 51:145–160

    Article  PubMed  Google Scholar 

  • Schino G, Perretta G, Taglioni AM, Monaco V, Troisi A (1996) Primate displacement activities as an ethopharmacological model of anxiety. Anxiety 2:186–191

    Article  PubMed  CAS  Google Scholar 

  • Schultz W (2010) Dopamine signals for reward value and risk: basic and recent data. Behav Brain Funct 6:24

    Article  PubMed  CAS  Google Scholar 

  • Schultz W, Apicella P, Ljungberg T (1993) Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J Neurosci 13:900–913

    PubMed  CAS  Google Scholar 

  • Shanahan M, Baars B (2005) Applying global workspace theory to the frame problem. Cognition 98:157–176

    Article  PubMed  Google Scholar 

  • Sovrano VA, Bisazza A, Vallortigara G (2002) Modularity and spatial reorientation in a simple mind: encoding of geometric and nongeometric properties of a spatial environment by fish. Cognition 85:B51–B59

    Article  PubMed  Google Scholar 

  • Sperber D (1994) The modularity of thought and the epidemiology of representations. In: Hirschfeld LA, Gelman SA (eds) Mapping the mind: Domain specificity in cognition and culture. Cambridge University Press, New York, pp 39–67

    Chapter  Google Scholar 

  • Sperber D (2002) In defense of massive modularity. In: Dupoux E (ed) Language, brain and cognitive development: essays in honor of Jacques Mehler. The MIT Press, Cambridge, pp 47–57

    Google Scholar 

  • Sperber D (2005) Modularity and relevance: how can a massively modular mind be flexible and context-sensitive? In: Carruthers P, Laurence S, Stich S (eds) The innate mind: structure and content. Oxford University Press, New York, pp 53–68

    Google Scholar 

  • Stalnaker TA, Calhoon GG, Ogawa M, Roesch MR, Schoenbaum G (2010) Neural correlates of stimulus-response and response-outcome associations in dorsolateral versus dorsomedial striatum. Front Integ Neurosci 4:1–18

    Google Scholar 

  • Tang C, Pawlak AP, Prokopenko V, West MO (2007) Changes in activity of the striatum during formation of a motor habit. Eur J Neurosci 25:1212–1227

    Article  PubMed  Google Scholar 

  • Tooby J, Cosmides L (1992) The psychological foundations of culture. In: Barkow JH, Cosmides L, Tooby J (eds) The adapted mind: evolutionary psychology and the generation of culture. Oxford University Press, Oxford, pp 19–136

    Google Scholar 

  • Tricomi E, Balleine BW, O’Doherty JP (2009) A specific role for posterior dorsolateral striatum in human habit learning. Eur J Neurosci 29:2225–2232

    Article  PubMed  Google Scholar 

  • Turchi J, Sarter M (1997) Cortical acetylcholine and processing capacity: effects of cortical cholinergic deafferentation on crossmodal divided attention in rats. Cognit Brain Res 6:147–158

    Article  CAS  Google Scholar 

  • Uttal WR (2001) The new phrenology: the limits of localizing cognitive processes in the brain. The MIT Press, Cambridge

    Google Scholar 

  • von Frisch K (1967) The dance-language and orientation of bees. Harvard University Press, Cambridge

    Google Scholar 

  • Wadenberg M-L, Ericson E, Magnusson O, Ahlenius S (1990) Suppression of conditioned avoidance behavior by the local application of (–)sulpiride into the ventral, but not the dorsal, striatum of the rat. Biol Psychiat 28:297–307

    Article  PubMed  CAS  Google Scholar 

  • Webster HH, Hanisch UK, Dykes RW, Biesold D (1991a) Basal forebrain lesions with or without reserpine injection inhibit cortical reorganization in rat hindpaw primary somatosensory cortex following sciatic nerve section. Somatosens Mot Res 8:327–346

    Article  PubMed  CAS  Google Scholar 

  • Webster HH, Rasmusson DD, Dykes RW, Schliebs R, Schober W, Brückner G, Biesold D (1991b) Long-term enhancement of evoked potentials in raccoon somatosensory cortex following co-activation of the nucleus basal of Meynert complex and cutaneous receptors. Brain Res 545:292–296

    Article  PubMed  CAS  Google Scholar 

  • Wehner R, Flatt I (1972) The visual orientation of desert ants, Cataglyphis bicolor, by means of territorial cues. In: Wehner R (ed) Information processing in the visual system of arthropods. Springer, New York, pp 295–302

    Chapter  Google Scholar 

  • Weinstein A, Feldtkeller B, Malizia A, Wilson S, Bailey J, Nutt DJ (1998) Integrating the cognitive and physiological aspects of craving. J Psychopharmacol 12:31–38

    Article  PubMed  CAS  Google Scholar 

  • Wickens JR, Budd CS, Hyland BI, Arbuthnott GW (2007) Striatal contributions to reward and decision making: making sense of regional variations in the reiterated processing matrix. Ann NY Acad Sci 1104:192–212

    Article  PubMed  Google Scholar 

  • Yin HH, Knowlton BJ (2004) Contributions of striatal subregions to place and response learning. Learn Mem 11:459–463

    Article  PubMed  Google Scholar 

  • Yin HH, Knowlton BJ (2006) The role of the basal ganglia in habit formation. Nature Rev Neurosci 7:464–476

    Article  CAS  Google Scholar 

  • Yin HH, Knowlton BJ, Balleine BW (2004) Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur J Neurosci 19:181–189

    Article  PubMed  Google Scholar 

  • Yin HH, Mulcare SP, Hilario MR, Clouse E, Holloway T, Davis MI, Hansson AC, Lovinger DM, Costa RM (2009) Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill. Nat Neurosci 12:333–341

    Article  PubMed  CAS  Google Scholar 

  • Young AM, Joseph MH, Gray JA (1993) Latent inhibition of conditioned dopamine release in rat nucleus accumbens. Neuroscience 54:5–9

    Article  PubMed  CAS  Google Scholar 

  • Young AMJ, Ahier RG, Upton RL, Joseph MH, Gray JA (1998) Increased extracellular dopamine in the nucleus accumbens of the rat during associative learning of neutral stimuli. Neuroscience 83:1175–1183

    Article  PubMed  CAS  Google Scholar 

  • Young AMJ, Moran PM, Joseph MH (2005) The role of dopamine in conditioning and latent inhibition: what, when, where and how? Neurosci Biobehav Rev 29:963–976

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Dr. Mike Robinson for his useful suggestions and English corrections, as well as three anonymous reviewers and the editor for their helpful comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Anselme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anselme, P. Modularity of mind and the role of incentive motivation in representing novelty. Anim Cogn 15, 443–459 (2012). https://doi.org/10.1007/s10071-012-0499-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-012-0499-5

Keywords

Navigation