Skip to main content
Log in

Application of experimental design as a statistical approach to recover bioactive peptides from different food sources

  • Review
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Bioactive peptides (BAPs) derived from samples of animals and plants have been widely recommended and consumed for their beneficial properties to human health and to control several diseases. This work presents the applications of experimental designs (DoE) used to perform factor screening and/or optimization focused on finding the ideal hydrolysis condition to obtain BAPs with specific biological activities. The collection and discussion of articles revealed that Box Behnken Desing and Central Composite Design were the most used. The main parameters evaluated were pH, time, temperature and enzyme/substrate ratio. Among vegetable protein sources, soy was the most used in the generation of BAPs, and among animal proteins, milk and shrimp stood out as the most explored sources. The degree of hydrolysis and antioxidant activity were the most investigated responses in obtaining BAPs. This review brings new information that helps researchers apply these DoE to obtain high-quality BAPs with the desired biological activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BAPs:

Bioactive peptides

DoE:

Design of experiments

RSM:

Response surface methodology

OFAT:

One-factor-at-a-time

FFD:

Full factorial design

FrFD:

Fractional factorial design

PBD:

Plackett–Burman design

CCD:

Central composite design

BBD:

Box–Behnken design

SCD:

Simplex centroid design

SLbD:

Simplex lattice design

DH:

Degree of hydrolysis

E/S:

Enzyme/substrate ratio

Da:

Dalton

MW:

Molar weight

MWCO:

Molecular weight cut-off

AAs:

Amino acids

AA:

Antioxidant activity

DPPH:

Diphenyl-picrylhydrazyle

ABTS:

2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)

FRAP:

Ferric reducing antioxidant power

ORAC:

Oxygen radical absorbance capacity

RP:

Reducing power

DPP-IV:

Dipeptidyl peptidase-IV

IBC:

Iron-binding capacity

TCA:

Trichloroacetic acid

TCA-SPI:

Trichloroacetic acid soluble peptide index

MALDI-TOF–MS:

Matrix-assisted laser desorption/ionization-time of flight mass spectrometry

RP–HPLC–MS/MS:

Reverse-phase high-performance liquid chromatography coupled with tandem mass spectrometry

HPLC-SEC:

Size-exclusion high-performance liquid chromatography

RP-HPLC:

Liquid chromatography and reverse-phase separation

References

  • Aguilar JGS, de Castro RJS, Sato HH. Production of antioxidant peptides from pea protein using protease from Bacillus licheniformis LBA 46. International Journal of Peptide Research and Therapeutics, 26: 435-443 (2020).

    Article  CAS  Google Scholar 

  • Aguilar JGS, de Souza AKS, de Castro RJS. Enzymatic hydrolysis of chicken viscera to obtain added-value protein hydrolysates with antioxidant and antihypertensive properties. International Journal of Peptide Research and Therapeutics. 26: 717-725 (2019a).

    Article  Google Scholar 

  • Aguilar JGS, Granato Cason V, de Castro RJS. Improving antioxidant activity of black bean protein by hydrolysis with protease combinations. International Journal of Food Science & Technology. 54: 34-41 (2019b).

    Article  CAS  Google Scholar 

  • Arihara K, Yokoyama I, Ohata M. Bioactivities generated from meat proteins by enzymatic hydrolysis and the Maillard reaction. Meat Science, 180: 108561 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Aslan N, Cebeci Y. Application of Box-Behnken design and response surface methodology for modeling of some Turkish coals. Fuel. 86: 90-97 (2007).

    Article  CAS  Google Scholar 

  • Azcarate SM, Pinto L, Goicoechea HC. Applications of mixture experiments for response surface methodology implementation in analytical methods development. Journal of Chemometrics. 34: 1-19 (2020).

    Article  Google Scholar 

  • Ballatore MB, Bettiol, MR, Vanden Braber NL, Aminahuel CA, Rossi YE, Petroselli G, Erra-Balsells, R., Cavaglieri, L. R., & Montenegro, M. A. Antioxidant and cytoprotective effect of peptides produced by hydrolysis of whey protein concentrate with trypsin. Food Chemistry. 31: 126472 (2020).

    Article  Google Scholar 

  • Barros Neto B, Scarminio IS, Bruns RE. Como Fazer Experimentos: Pesquisa e Desenvolvimento na Ciência e na Indústria. 4th ed. Editora da Unicamp (2001).

  • Bezerra MA., Lemos VA, Novaes CG, de Jesus RM, Filho HRS, Araújo SA, Alves JPS. Application of mixture design in analytical chemistry. Microchemical Journal. 152: 104336 (2020).

    Article  CAS  Google Scholar 

  • Cao W, Zhang C, Ji H, Hao J. Optimization of peptic hydrolysis parameters for the production of angiotensin I-converting enzyme inhibitory hydrolysate from Acetes chinensis through Plackett-Burman and response surface methodological approaches. Journal of the Science of Food and Agriculture. 92: 42-48 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Casarin, ALF, Rasera, GB, de Castro, RJS. Combined biotransformation processes affect the antioxidant, antidiabetic and protease inhibitory properties of lentils. Process Biochemistry. 102: 250-260 (2021).

    Article  CAS  Google Scholar 

  • Chi F, Liu T, Liu L, Tan Z, Gu X, Yang L, Luo Z. Optimization of antioxidant hydrolysate produced from tibetan egg white with papain and its application in yak milk yogurt. Molecules. 25: 1-12 (2020).

    Google Scholar 

  • Contreras MM, Hernández-Ledesma B, Amigo L, Martín-Álvarez PJ, Recio I. Production of antioxidant hydrolyzates from a whey protein concentrate with thermolysin: Optimization by response surface methodology. LWT. 44: 9-15 (2011).

    Article  CAS  Google Scholar 

  • Cruz-Casas DE, Aguilar CN, Ascacio-Valdês JA, Rodríguez-Herrera R, Chávez-González ML, Flores-Gallegos AC. Enzymatic hydrolysis and microbial fermentation: The most favorable biotechnological methods for the release of bioactive peptides. Food Chemistry: Molecular Sciences. 3: 100047 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Castro RJS, Cason VG, Sato HH. Binary mixture of proteases increases the antioxidant properties of white bean (Phaseolus vulgaris L.) protein-derived peptides obtained by enzymatic hydrolysis. Biocatalysis and Agricultural Biotechnology. 10: 291-297 (2017).

    Article  Google Scholar 

  • de Castro RJS, Inacio RF, de Oliveira ALR, Sato HH. Statistical optimization of protein hydrolysis using mixture design: Development of efficient systems for suppression of lipid accumulation in 3T3-L1 adipocytes. Biocatalysis and Agricultural Biotechnology. 5: 17-23 (2016).

    Article  Google Scholar 

  • de Castro RJS, Sato HH. Comparison and synergistic effects of intact proteins and their hydrolysates on the functional properties and antioxidant activities in a simultaneous process of enzymatic hydrolysis. Food and Bioproducts Processing. 92: 80-88 (2014).

    Article  CAS  Google Scholar 

  • de Castro RJS, Sato HH. A response surface approach on optimization of hydrolysis parameters for the production of egg white protein hydrolysates with antioxidant activities. Biocatalysis and Agricultural Biotechnology. 4: 55-62 (2015a).

    Article  Google Scholar 

  • de Castro RJS, Sato HH. Synergistic actions of proteolytic enzymes for production of soy protein hydrolysates with antioxidant activities: An approach based on enzymes specificities. Biocatalysis and Agricultural Biotechnology. 4: 694-702 (2015b).

    Article  Google Scholar 

  • de Oliveira CF, Corrêa APF, Coletto D, Daroit DJ, Cladera-Olivera F, Brandelli A. Soy protein hydrolysis with microbial protease to improve antioxidant and functional properties. Journal of Food Science and Technology. 52: 2668-2678 (2015).

    Article  PubMed  Google Scholar 

  • Dhanabalan V, Xavier M, Murthy LN, Asha KK, Balange AK, Nayak BB. Evaluation of physicochemical and functional properties of spray-dried protein hydrolysate from non-penaeid shrimp (Acetes indicus). Journal of the Science of Food and Agriculture. 100: 50-58 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Ding J, Liang R, Yang Y, Sun N, Lin S. Optimization of pea protein hydrolysate preparation and purification of antioxidant peptides based on an in silico analytical approach. LWT. 123:109126 (2020).

    Article  CAS  Google Scholar 

  • Elmalimadi MB, Jovanović JR, Stefanovi AB, Tanasković SJ, Djurović SB, Bugarski BM, Knežević-Jugović ZD. Controlled enzymatic hydrolysis for improved exploitation of the antioxidant potential of wheat gluten. Industrial Crops and Products. 109:548-557 (2017).

    Article  CAS  Google Scholar 

  • Eriksson L, Johansson E, Kettaneh-Wold N, Wikstrom C, and Wold S. Design of Experiments: Principles and Applications. 3th ed. Umetrics Academy (2008).

  • Fan S, Hu Y, Li C, Liu Y. Optimization of preparation of antioxidative peptides from pumpkin seeds using response surface method. PLOS ONE. 9:1-6 (2014).

    Google Scholar 

  • Ferreira SLC, Bruns RE, da Silva EGP, dos Santos WNL, Quintella CM, David JM, de Andrade JB, Breitkreitz MC, Jardim ICSF, Neto BB. Statistical designs and response surface techniques for the optimization of chromatographic systems. Journal of Chromatography A.1158: 2-14 (2007a).

    Article  CAS  PubMed  Google Scholar 

  • Ferreira SLC, Bruns RE, Ferreira HS, Matos GD, David JM, Brandão GC, da Silva EGP, Portugal LA, dos Reis PS, Souza AS, dos Santos WNL. Box-Behnken design: An alternative for the optimization of analytical methods. Analytica Chimica Acta. 597: 179-186 (2007b).

    Article  CAS  PubMed  Google Scholar 

  • Gao D, Zhang F, Ma Z, Chen S, Ding G, Tian X, Feng R. Isolation and identification of the angiotensin-I converting enzyme (ACE) inhibitory peptides derived from cottonseed protein: optimization of hydrolysis conditions. International Journal of Food Properties. 22: 1296-1309 (2019).

    Article  CAS  Google Scholar 

  • Goswami B, Majumdar S, Das A, Barui A, Bhowal J. Evaluation of bioactive properties of Pleurotus ostreatus mushroom protein hydrolysate of different degree of hydrolysis. LWT. 149: 111768 (2021).

    Article  CAS  Google Scholar 

  • Hajfathalian M, Ghelichi S, García-Moreno PJ, Moltke Sørensen AD, Jacobsen C. Peptides: Production, bioactivity, functionality, and applications. Critical Reviews in Food Science and Nutrition. 58: 3097-3129 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Halim NRA, Sarbon NM. A response surface approach on hydrolysis condition of eel (Monopterus Sp.) protein hydrolysate with antioxidant activity. International Food Research Journal. 24: 1081-1093 (2017).

    CAS  Google Scholar 

  • He S, Zhang Y, Sun H, Du M, Qiu J, Tang M, Sun X, Zhu B. Antioxidative peptides from proteolytic hydrolysates of false abalone (Volutharpa ampullacea perryi): Characterization, identification, and molecular docking. Marine Drugs. 17: 1-21 (2019).

    Article  Google Scholar 

  • He S., Wang F, Ning Z, Yang B, Wang Y. Preparation of anchovy (Engraulis japonicus) protein hydrolysates with high free radical-scavenging activity using endogenous and commercial enzymes. Food Science and Technology International. 20: 567-578 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Hemker AK, Nguyen LT, Karwe M, Salvi D. Effects of pressure-assisted enzymatic hydrolysis on functional and bioactive properties of tilapia (Oreochromis niloticus) by-product protein hydrolysates. LWT. 122: 109003 (2020).

    Article  CAS  Google Scholar 

  • Hussein FA, Chay SY, Zarei M, Auwal SM, Hamid AA, Wan Ibadullah WZ, Saari N. Whey protein concentrate as a novel source of bifunctional peptides with angiotensin-I converting enzyme inhibitory and antioxidant properties: RSM study. Foods. 9: 1-15 (2020).

    Article  CAS  Google Scholar 

  • Ilhan-Ayisigi E, Budak G, Celiktas MS, Sevimli-Gur C, Yesil-Celiktas O. Anticancer activities of bioactive peptides derived from rice husk both in free and encapsulated form in chitosan. Journal of Industrial and Engineering Chemistry. 103: 381-391 (2021).

    Article  CAS  Google Scholar 

  • Jacyna J, Kordalewska M, Markuszewski MJ. Design of Experiments in metabolomics-related studies: An overview. Journal of Pharmaceutical and Biomedical Analysis. 164: 598-606 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Jakovetić Tanasković S, Luković N, Grbavčić S, Stefanović A, Jovanović J, Bugarski B, Knežević-Jugović Z. Production of egg white protein hydrolysates with improved antioxidant capacity in a continuous enzymatic membrane reactor: optimization of operating parameters by statistical design. Journal of Food Science and Technology. 55: 128-137 (2018).

    Article  PubMed  Google Scholar 

  • Jia C.L, Hussain N, Joy Ujiroghene O, Pang XY, Zhang SW, Lu J, Liu L, Lv, JP. Generation and characterization of dipeptidyl peptidase-IV inhibitory peptides from trypsin-hydrolyzed α-lactalbumin-rich whey proteins. Food Chemistry. 318: 126333 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Cui Z, Wang L, Xu H, Zhang Y. Production of bioactive peptides from corn gluten meal by solid-state fermentation with Bacillus subtilis MTCC5480 and evaluation of its antioxidant capacity in vivo. LWT. 131: 109767 (2020).

    Article  CAS  Google Scholar 

  • Karami Z, Peighambardoust SH, Hesari J, Akbari-Adergani B, Andreu D. Identification and synthesis of multifunctional peptides from wheat germ hydrolysate fractions obtained by proteinase K digestion. Journal of Food Biochemistry. 43: 1-17 (2019).

    Article  Google Scholar 

  • Li-Chan ECY. Bioactive peptides and protein hydrolysates: Research trends and challenges for application as nutraceuticals and functional food ingredients. Current Opinion in Food Science. 1: 28-37 (2015).

    Article  Google Scholar 

  • Li X, Xiong H, Yang K, Peng D, Peng H, Zhao Q. Optimization of the biological processing of rice dregs into nutritional peptides with the aid of trypsin. Journal of Food Science and Technology. 49: 537-546 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Lima CA, Campos JF, Filho JLL, Converti A, da Cunha MGC, Porto ALF. Antimicrobial and radical scavenging properties of bovine collagen hydrolysates produced by Penicillium aurantiogriseum URM 4622 collagenase. Journal of Food Science and Technology. 52: 4459-4466 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Zhang T, Liang X, Yuan Q, Zeng X, Wu Z, Pan D, Tao M, Guo Y. Production and transepithelial transportation of casein-derived peptides and identification a novel antioxidant peptide LHSMK. LWT. 151: 112194 (2021).

    Article  CAS  Google Scholar 

  • Ma T, Fu Q, Mei Q, Tu Z, Zhang L. Extraction optimization and screening of angiotensin-converting enzyme inhibitory peptides from Channa striatus through bioaffinity ultrafiltration coupled with LC-Orbitrap-MS/MS and molecular docking. Food Chemistry. 354: 129589 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Maqsoudlou A, Mahoonak AS, Mora L, Mohebodini H, Toldrá F, Ghorbani M. Peptide identification in alcalase hydrolysated pollen and comparison of its bioactivity with royal jelly. Food Research International. 116: 905-915 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Marciniak A, Suwal S, Naderi N, Pouliot Y, Doyen A. Enhancing enzymatic hydrolysis of food proteins and production of bioactive peptides using high hydrostatic pressure technology. Trends in Food Science and Technology. 80: 187-198 (2018).

    Article  CAS  Google Scholar 

  • Marrubini G, Dugheri S, Cappelli G, Arcangeli G, Mucci N, Appelblad P, Melzi C, Speltini A. Experimental designs for solid-phase microextraction method development in bioanalysis: A review. Analytica Chimica Acta. 1119: 77-100 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Marson GV, de Castro RJS, Machado MTC, da Silva Zandonadi F, Barros HDFQ, Maróstica Júnior MR, Sussulini A, Hubinger MD. Proteolytic enzymes positively modulated the physicochemical and antioxidant properties of spent yeast protein hydrolysates. Process Biochemistry. 91: 34-45 (2020).

    Article  CAS  Google Scholar 

  • Marson GV, Machado MTC, de Castro RJS, Hubinger MD. Sequential hydrolysis of spent brewer’s yeast improved its physico-chemical characteristics and antioxidant properties: A strategy to transform waste into added-value biomolecules. Process Biochemistry. 84: 91-102 (2019).

    Article  CAS  Google Scholar 

  • Martín-del-Campo ST, Martínez-Basilio PC, Sepúlveda-Álvarez JC, Gutiérrez-Melchor SE, Galindo-Peña KD, Lara-Domínguez AK, Cardador-Martínez A. Production of antioxidant and ACEI peptides from cheese whey discarded from mexican white cheese production. Antioxidants. 8: 1-10 (2019).

    Article  Google Scholar 

  • Mendes MKA, Oliveira CBS, Veras MDA, Araújo BQ, Dantas C, Chaves MH, Lopes Júnior CA, Vieira EC. Application of multivariate optimization for the selective extraction of phenolic compounds in cashew nuts (Anacardium occidentale L.). Talanta. 205: 120100 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Montgomery DC. Design and Analysis of Experiments. (8th ed.). Wiley, New York (2012).

    Google Scholar 

  • Mousavi L, Tamiji Z, Khoshayand MR. Applications and opportunities of experimental design for the dispersive liquid–liquid microextraction method—A review. Talanta. 190:335-356 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Mune MAM. Influence of degree of hydrolysis on the functional properties of cowpea protein hydrolysates. Journal of Food Processing and Preservation. 39: 2386-2392 (2015).

    Article  Google Scholar 

  • Myers RH, Montgomery DC, Anderson-cook CM. Response Surface Methodology. (4th ed.). Wiley, New York (2009).

    Google Scholar 

  • Narenderan ST, Meyyanathan SN, Karri VVSR. Experimental design in pesticide extraction methods: A review. Food Chemistry. 289: 384-395 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Ng KL, Ayob MK, Said M, Osman MA, Ismail A. Optimization of enzymatic hydrolysis of palm kernel cake protein (PKCP) for producing hydrolysates with antiradical capacity. Industrial Crops and Products. 43: 725-731. (2013).

    Article  CAS  Google Scholar 

  • Nuñez SM, Cárdenas C, Valencia P, Masip Y, Pinto M, Almonacid S. Water-holding capacity of enzymatic protein hydrolysates: A study on the synergistic effects of peptide fractions. LWT 152: 112357 (2021).

    Article  Google Scholar 

  • Okolie JA, Epelle EI, Nanda S, Castello D, Dalai AK, Kozinski JA. Modeling and process optimization of hydrothermal gasification for hydrogen production: A comprehensive review. The Journal of Supercritical Fluids. 173, 105199 (2021).

    Article  CAS  Google Scholar 

  • Pereira DG, Justus A, Falcão HG, Rocha TS, Ida EI, Kurozawa LE. Enzymatic hydrolysis of okara protein concentrate by mixture of endo and exopeptidase. Journal of Food Processing and Preservation. 43: 1-9 (2019).

    Article  Google Scholar 

  • Rafi NM, Halim NRA, Amin AM, Sarbon NM. Response surface optimization of enzymatic hydrolysis conditions of lead tree (Leucaena leucocephala) seed hydrolysate. International Food Research Journal. 22: 1015-1023 (2015).

    CAS  Google Scholar 

  • Rivero-Pino F, Espejo-Carpio FJ, Guadix EM. Production and identification of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from discarded Sardine pilchardus protein. Food Chemistry. 328: 127096 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Ruan S, Luo J, Li Y, Wang Y, Huang S, Lu F, Ma H. Ultrasound-assisted liquid-state fermentation of soybean meal with Bacillus subtilis: Effects on peptides content, ACE inhibitory activity and biomass. Process Biochemistry. 91: 73-82 (2020).

    Article  CAS  Google Scholar 

  • Ryder K, Bekhit AED, McConnell M, Carne A. Towards generation of bioactive peptides from meat industry waste proteins: Generation of peptides using commercial microbial proteases. Food Chemistry. 208: 42-50 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Sahu PK, Ramisetti NR, Cecchi T, Swain S, Patro CS, Panda J. An overview of experimental designs in HPLC method development and validation. Journal of Pharmaceutical and Biomedical Analysis. 147: 590-611 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Sanjukta S, Rai AK. Production of bioactive peptides during soybean fermentation and their potential health benefits. Trends in Food Science and Technology. 50: 1-10 (2016).

    Article  CAS  Google Scholar 

  • Santana A, Melo A, Tavares T, Ferreira IMPLVO. Biological activities of peptide concentrates obtained from hydrolysed eggshell membrane byproduct by optimisation with response surface methodology. Food and Function. 7: 4597-4604 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Sharma KM, Kumar R, Panwar S, Kumar A. Microbial alkaline proteases: Optimization of production parameters and their properties. Journal of Genetic Engineering and Biotechnology. 15: 115-126 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Pradhan R, Manickavasagan A, Thimmanagari M, Saha D, Singh SS, Dutta A. Production of antioxidative protein hydrolysates from corn distillers solubles: Process optimization, antioxidant activity evaluation, and peptide analysis. Industrial Crops and Products. 184: 115107 (2022).

    Article  CAS  Google Scholar 

  • Shu G, Mei S, Zhang Q, Xin N, Chen H. Application of the Plackett-Burman design to determine the main factors affecting the anti-oxidative activity of goat’s milk casein hydrolyzed by Alcalase and papain. Acta Scientiarum Polonorum Technologia Alimentaria. 17: 257-266 (2018).

    CAS  PubMed  Google Scholar 

  • Singh A, Banerjee R. Peptide enriched functional food adjunct from soy whey: A statistical optimization study. Food Science and Biotechnology. 22: 65-71 (2013).

    Article  CAS  Google Scholar 

  • Singh TP, Siddiqi RA, Sogi DS. Statistical optimization of enzymatic hydrolysis of rice bran protein concentrate for enhanced hydrolysate production by papain. LWT. 99: 77-83 (2019).

    Article  CAS  Google Scholar 

  • Sosalagere C, Adesegun Kehinde B, Sharma P. Isolation and functionalities of bioactive peptides from fruits and vegetables: A reviews. Food Chemistry. 366: 130494(2022).

    Article  CAS  PubMed  Google Scholar 

  • Stalikas C, Fiamegos Y, Sakkas V, Albanis T. Developments on chemometric approaches to optimize and evaluate microextraction. Journal of Chromatography A. 1216: 175-189 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Luo Y, Shen H, Hu X. Effects of pH, temperature and enzyme to substrate ratio on the antioxidant activity of porcine hemoglobin hydrolysate prepared with pepsin. Journal of Food Biochemistry. 35: 44-61 (2011).

    Article  CAS  Google Scholar 

  • Tavano OL. Protein hydrolysis using proteases: An important tool for food biotechnology. Journal of Molecular Catalysis B: Enzymatic. 90: 1-11 (2013).

    Article  CAS  Google Scholar 

  • Tavares Luiz M, Viegas JSR, Abriata JP, Viegas F, Vicentini FTMC, Bentley MVLB, Chorilli M, Marchetti JM, Tapia-Blácido DR. Design of experiments (DoE) to develop and to optimize nanoparticles as drug delivery systems. European Journal of Pharmaceutics and Biopharmaceutics.165: 127-148 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Tavares TG, Contreras MM, Amorim M, Martín-Álvarez PJ, Pintado ME, Recio I, Malcata FX. Optimisation, by response surface methodology, of degree of hydrolysis and antioxidant and ACE-inhibitory activities of whey protein hydrolysates obtained with cardoon extract. International Dairy Journal. 21: 926-933 (2011).

    Article  CAS  Google Scholar 

  • Teófilo RF, Ferreira MMC. Quimiometria II: Planilhas eletrônicas para cálculos de planejamentos experimentais, um tutorial. Quimica Nova. 29: 338-350 (2006).

    Article  Google Scholar 

  • Toldrá F, Reig M, Aristoy MC, Mora L. Generation of bioactive peptides during food processing. Food Chemistry. 267: 395-404 (2018).

    Article  PubMed  Google Scholar 

  • Vaštag Ž, Popović L, Popović S, Peričin-Starčević I, Krimer-Malešević V. In vitro study on digestion of pumpkin oil cake protein hydrolysate: Evaluation of impact on bioactive properties. International Journal of Food Sciences and Nutrition. 64: 452-460 (2013).

    Article  PubMed  Google Scholar 

  • Vera Candioti L, De Zan MM, Cámara MS, Goicoechea HC. Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta. 124: 123-138 (2014).

    Article  CAS  Google Scholar 

  • Vo TDL, Pham KT, Le VMV, Lam HH, Huynh ON, Vo BC. Evaluation of iron-binding capacity, amino acid composition, functional properties of Acetes japonicus proteolysate and identification of iron-binding peptides. Process Biochemistry. 91: 374-386 (2020).

    Article  CAS  Google Scholar 

  • Vy HTT, Truc TT, Muoi NV. Optimization of protein hydrolysis conditions from shrimp head meat (Litopenaeus vannamei) using commercial alcalase and flavourzyme enzymes. Can Tho University Journal of Science. 54: 16-25 (2018).

    Google Scholar 

  • Wang X, Yu H, Xing R, Chen X, Li R, Li K, Liu S, Li P. Purification and identification of antioxidative peptides from mackerel (Pneumatophorus japonicus) protein. RSC Advances. 8: 20488-20498 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu D, Li M, Ding J, Zheng J, Zhu BW, Lin S. Structure-activity relationship and pathway of antioxidant shrimp peptides in a PC12 cell model. Journal of Functional Foods. 70: 103978 (2020).

    Article  CAS  Google Scholar 

  • Wu W, Zhao S, Chen C, Ge F, Liu D, He X. Optimization of production conditions for antioxidant peptides from walnut protein meal using solid-state fermentation. Food Science and Biotechnology. 23: 1941-1949 (2014).

    Article  CAS  Google Scholar 

  • XIE Y, Peng X, Li Z, Wang J, Li M, Xiao S, Zhang S. Production and fermentation characteristics of antifungal peptides by synergistic interactions with Lactobacillus paracasei and Propionibacterium freudenii in supplemented whey protein formulations. LWT. 164: 113632 (2022).

    Article  CAS  Google Scholar 

  • Xu B, Wang X, Zheng Y, Li Y, Guo M, Yan Z. Novel antioxidant peptides identified in millet bran glutelin-2 hydrolysates: Purification, in silico characterization and security prediction, and stability profiles under different food processing conditions. LWT. 164: 113634 (2022).

    Article  CAS  Google Scholar 

  • Yang QW, Zhen C, Chen S, Zhang Y, Shen W, Chen SS, Huang GR. Optimization of Enzymatic Hydrolysis for Producing Ferrous Binding Peptides from Horse Mackerel (Trachurus japonicus) Processing Byproducts. Biotechnology. 14: 254-259 (2015).

    Article  CAS  Google Scholar 

  • Yang R, Zhao X, Kuang Z, Ye M, Luo G, Xiao G, Liao S, Li L, Xiong Z. Optimization of antioxidant peptide production in the hydrolysis of silkworm (Bombyx mori L.) pupa protein using response surface methodology. Journal of Food Agriculture and Environment. 11: 952-956 (2013).

    CAS  Google Scholar 

  • Yin S, Tang C, Cao J, Hu E, Wen Q, Yang X. Effects of limited enzymatic hydrolysis with trypsin on the functional properties of hemp (Cannabis sativa L.) protein isolate. Food Chemistry. 106: 1004-1013 (2008).

    Article  CAS  Google Scholar 

  • Yuan J, Zheng Y, Wu Y, Chen H, Tong P, Gao J. Double enzyme hydrolysis for producing antioxidant peptide from egg white: Optimization, evaluation, and potential allergenicity. Journal of Food Biochemistry. 44: 1-12 (2020).

    Article  Google Scholar 

  • Zhang K, Zhang B, Chen B, Jing L, Zhu Z, Kazemi, K. Modeling and optimization of Newfoundland shrimp waste hydrolysis for microbial growth using response surface methodology and artificial neural networks. Marine Pollution Bulletin. 109: 245-252 (2016a).

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Li Y, Zhang J, Huang G. Optimization of hydrolysis conditions for the production of Iron-Binding peptides from Scad (Decapterus Maruadsi) processing byproducts. American Journal of Biochemistry and Biotechnology. 12: 220-229 (2016b).

    Article  CAS  Google Scholar 

  • Zhang Y, He S, Bonneil É, Simpson BK. Generation of antioxidative peptides from Atlantic sea cucumber using alcalase versus trypsin: In vitro activity, de novo sequencing, and in silico docking for in vivo function prediction. Food Chemistry. 306: 125581 (2020a).

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Li Q, Guo B, Zhang S, Zhang S, Hu D. Optimization of process parameters for preparation of polystyrene PM2.5 particles by supercritical antisolvent method using BBD-RSM. Scientific Reports. 10: 1-12 (2020b).

    Google Scholar 

  • Zheng Z, Si D, Ahmad B, Li Z, Zhang R. A novel antioxidative peptide derived from chicken blood corpuscle hydrolysate. Food Research International. 106: 410-419 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Zhou D, Qin L, Zhu B, Li D, Yang J, Dong X, Murata Y. Optimisation of hydrolysis of purple sea urchin (Strongylocentrotus nudus) gonad by response surface methodology and evaluation of in vitro antioxidant activity of the hydrolysate. Journal of the Science of Food and Agriculture. 92: 1694-1701 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Yi X, Wang J, Yang Q, Wang S. Optimization of the ultrasonic-microwave assisted enzymatic hydrolysis of freshwater mussel meat. International Journal of Agricultural and Biological Engineering. 11: 236-242 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank to Fundação de Amparo à Pesquisa do Estado do Piauí (FAPEPI, Piauí, Brazil), Fundação de Amparo à Pesquisa do Estado do Maranhão (FAPEMA, Maranhão, Brazil, UNIVERSAL-01600/18), Coordenação de Aperfeiçoamento de Pessoal Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grant 400893/2019-3, 140212/2020-5, 200275/2020-8), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Grant 2022/10416-9) for scholarships and financial support.

Author information

Authors and Affiliations

Authors

Contributions

Mikael Kélvin de Albuquerque Mendes: conceptualization, investigation, writing of the original article. Christian Bremmer dos Santos Oliveira: conceptualization, investigation, writing of the original article. Carla Mariana da Silva Medeiros: conceptualization, investigation, writing of the original article. Clecio Dantas: editing the final version of the article and reviewing the design of the experiments topic. Ana Rita de Araújo Nogueira: rationale, supervision, editing, and correction of the final version of the article. Emanuel Carrilho: rationale, supervision, editing, and revision of the final version of the article. Cícero Alves Lopes Júnior: supervision, acquisition of financing, editing, and correction of the article's final version. Edivan Carvalho Vieira: supervision, acquisition of financing, editing, and correction of the article’s final version.

Corresponding authors

Correspondence to Cícero Alves Lopes Júnior or Edivan Carvalho Vieira.

Ethics declarations

Conflict of interest

The authors declare that no personal or financial interests may interfere with the work written in this article. We, CALJ and ECV, as the corresponding authors and on behalf of the staff, certify that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Albuquerque Mendes, M.K., dos Santos Oliveira, C.B., da Silva Medeiros, C.M. et al. Application of experimental design as a statistical approach to recover bioactive peptides from different food sources. Food Sci Biotechnol 33, 1559–1583 (2024). https://doi.org/10.1007/s10068-024-01540-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-024-01540-0

Keywords

Navigation