Skip to main content
Log in

Effect of modification methods on the physical properties and immunomodulatory activity of particulate β-glucan

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

β-Glucan is an immunoenhancing agent whose biological activities are linked to molecular structure. On that basis, the polysaccharide can be physiochemically modified to produce valuable functional materials. This study investigated the physical properties and immunostimulatory activity of modified β-glucan. Alkali-treated β-glucan had a distinct shape and smaller particle size than untreated β-glucan. The reduced particle size was conducive to the stability of the suspension because the β-glucan appeared to be completely dissolved by this treatment, forming an amorphous mass. Furthermore, alkali treatment improved the immunostimulating activity of β-glucan, whereas exposure of macrophages to heat-treated β-glucan decreased their immune activity. β-Glucan with reduced particle size by wet-grinding also displayed immunomodulatory activities. These results suggested that the particle size of β-glucan is a key factor in β-glucan-induced immune responses of macrophages. Thus, the modification of the β-glucan particle size provides new opportunities for developing immunoenhancing nutraceuticals or pharmacological therapies in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adachi Y, Okazaki M, Ohno N, Yadomae T. Enhancement of cytokine production by macrophages stimulated with (1→3)-β-D-glucan, grifolan (GRN), isolated from Grifola frondosa. Biological and Pharmaceutical Bulletin. 17:1554-1560 (1994)

    Article  CAS  PubMed  Google Scholar 

  • Adams EL, Rice PJ, Graves B, Ensley HE, Yu H, Brown GD, Gordon S, Monteiro MA, Papp-Szabo E, Lowman DW. Differential high-affinity interaction of dectin-1 with natural or synthetic glucans is dependent upon primary structure and is influenced by polymer chain length and side-chain branching. Journal of Pharmacology and Experimental Therapeutics. 325:115-123 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Barsanti L, Passarelli V, Evangelista V, Frassanito AM, Gualtieri P. Chemistry, physico-chemistry and applications linked to biological activities of β-glucans. Natural Product Reports. 28:457-466 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Borjihan G, Zhong G, Baigude H, Nakashima H, Uryu T. Synthesis and anti‐HIV activity of 6‐amino‐6‐deoxy‐(1→3)‐β‐d‐curdlan sulfate. Polymers for Advanced Technologies. 14:326-329 (2003)

    Article  CAS  Google Scholar 

  • Brown GD, Taylor PR, Reid DM, Willment JA, Williams DL, Martinez-Pomares L, Wong SY, Gordon S. Dectin-1 is a major β-glucan receptor on macrophages. The Journal of experimental medicine. 196:407-412 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Celada A, Gray PW, Rinderknecht E, Schreiber RD. Evidence for a gamma-interferon receptor that regulates macrophage tumoricidal activity. The Journal of experimental medicine. 160:55-74 (1984)

    Article  CAS  PubMed  Google Scholar 

  • Chuah CT, Sarko A, Deslandes Y, Marchessault RH. Packing analysis of carbohydrates and polysaccharides. Part 14. Triple-helical crystalline structure of curdlan and paramylon hydrates. Macromolecules. 16:1375-1382 (1983)

  • Di Luzio NR, Williams DL, McNamee RB, Edwards BF, Kitahama A. Comparative tumor‐inhibitory and anti‐bacterial activity of soluble and particulate glucan. International Journal of Cancer. 24:773-779 (1979)

    Article  PubMed  Google Scholar 

  • Elder MJ, Webster SJ, Chee R, Williams DL, Hill Gaston JS, Goodall JC. β-Glucan size controls dectin-1-mediated immune responses in human dendritic cells by regulating IL-1β production. Frontiers in Immunology. 8:791 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  • Funami T, Yada H, Nakao Y. Curdlan properties for application in fat mimetics for meat products. Journal of Food Science. 63:283-287 (1998)

    Article  CAS  Google Scholar 

  • Gissibl A, Care A, Parker LM, Iqbal S, Hobba G, Nevalainen H, Sunna A. Microwave pretreatment of paramylon enhances the enzymatic production of soluble β-1, 3-glucans with immunostimulatory activity. Carbohydrate Polymers. 196:339-347 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Goodridge HS, Reyes CN, Becker CA, Katsumoto TR, Ma J, Wolf AJ, Bose N, Chan ASH, Magee AS, Danielson ME. Activation of the innate immune receptor Dectin-1 upon formation of a ‘phagocytic synapse’. Nature. 472:471-475 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grandpierre C, Janssen HG, Laroche C, Michaud P, Warrand J. Enzymatic and chemical degradation of curdlan targeting the production of β-(1→3) oligoglucans. Carbohydrate Polymers. 71:277-286 (2008)

    Article  CAS  Google Scholar 

  • Harada T, Masada M, Fujimori K, Maeda I. Production of a firm, resilient gel-forming polysaccharide by a mutant of Alcaligenes faecalis var. myxogenes 10C3. Agricultural and Biological Chemistry. 30:196-198 (1966)

  • Hernanz‐Falcón P, Joffre O, Williams DL, Reis e Sousa C. Internalization of Dectin‐1 terminates induction of inflammatory responses. European Journal of Immunology. 39:507-513 (2009)

  • Kanzawa Y, Harada T, Koreeda A, Harada A. Curdlan gel formed by neutralizing its alkaline solution. Agricultural and Biological Chemistry. 51:1839-1843 (1987)

    CAS  Google Scholar 

  • Kumagai Y, Okuyama M, Kimura A. Heat treatment of curdlan enhances the enzymatic production of biologically active β-(1,3)-glucan oligosaccharides. Carbohydrate Polymers. 146:396-401 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhu L, Zheng ZY, Zhan XB, Lin CC, Zong Y, Li WJ. A new effective process for production of curdlan oligosaccharides based on alkali-neutralization treatment and acid hydrolysis of curdlan particles in water suspension. Applied Microbiology and Biotechnology. 97:8495-8503 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Maeda I, Saito H, Masada M, Misaki A, Harada T. Properties of gels formed by heat treatment of curdlan, a bacterial β-1,3 glucan. Agricultural and Biological Chemistry. 31:1184-1188 (1967)

    CAS  Google Scholar 

  • Mimura H, Ohno N, Suzuki I, Yadomae T. Purification, antitumor activity, and structural characterization of β-1,3-glucan from Peziza vesiculosa. Chemical and Pharmaceutical Bulletin. 33:5096-5099 (1985)

    Article  CAS  PubMed  Google Scholar 

  • Miyanishi N, Iwamoto Y, Watanabe E, Odaz T. Induction of TNF-α production from human peripheral blood monocytes with β-1,3-glucan oligomer prepared from laminarin with β-1,3-glucanase from Bacillus clausii NM-1. Journal of Bioscience and Bioengineering. 95:192-195 (2003)

    Article  CAS  PubMed  Google Scholar 

  • Municio C, Alvarez Y, Montero O, Hugo E, Rodriguez M, Domingo E, Alonso S, Fernandez N, Crespo MS. The response of human macrophages to β-glucans depends on the inflammatory milieu. PloS One. 8:e62016 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy EJ, Rezoagli E, Major I, Rowan NJ, Laffey JG. β-Glucan metabolic and immunomodulatory properties and potential for clinical application. Journal of Fungi. 6:356 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang Z, Otaka K, Maoka T, Hidaka K, Ishijima S, Oda M, Ohnishi M. Structure of β-glucan oligomer from laminarin and its effect on human monocytes to inhibit the proliferation of U937 cells. Bioscience, Biotechnology, and Biochemistry. 69:553-558 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Qu Y, Zhao X, Guo H, Meng Y, Wang Y, Zhou Y, Sun L. Structural analysis and macrophage activation of a novel β‑glucan isolated from Cantharellus cibarius. International Journal of Molecular Medicine. 47:1-1 (2021)

    Article  Google Scholar 

  • Rosas M, Liddiard K, Kimberg M, Faro-Trindade I, McDonald JU, Williams DL, Brown GD, Taylor PR. The induction of inflammation by Dectin-1 in vivo is dependent on myeloid cell programming and the progression of phagocytosis. The Journal of Immunology. 181:3549-3557 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Sahasrabudhe NM, Tian L, van den Berg M, Bruggeman G, Bruininx E, Schols HA, Faas MM, de Vos P. Endo-glucanase digestion of oat β-glucan enhances Dectin-1 activation in human dendritic cells. Journal of Functional Foods. 21:104-112 (2016)

    Article  CAS  Google Scholar 

  • Spicer EJF, Goldenthal EI, Ikeda T. A toxicological assessment of curdlan. Food and Chemical Toxicology. 37:455-479 (1999)

    Article  CAS  PubMed  Google Scholar 

  • Yanaki T, Tabata K, Kojima T. Melting behaviour of a triple helical polysaccharide schizophyllan in aqueous solution. Carbohydrate Polymers. 5:275-283 (1985)

    Article  CAS  Google Scholar 

  • Yokota K, Takashima A, Bergstresser PR, Ariizumi K. Identification of a human homologue of the dendritic cell-associated C-type lectin-1, dectin-1. Gene. 272:51-60 (2001)

    Article  CAS  PubMed  Google Scholar 

  • Yotsuzuka F. Curdlan. pp. 737-757. In: Handbook of dietary fiber. Cho SS (ed). CRC Press, Inc., Boca Raton, FL, USA (2001)

  • Yu Q, Nie SP, Li WJ, Zheng WY, Yin PF, Gong DM, Xie MY. Macrophage immunomodulatory activity of a purified polysaccharide isolated from Ganoderma atrum. Phytotherapy Research. 27:186-191 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Edgar KJ. Properties, chemistry, and applications of the bioactive polysaccharide curdlan. Biomacromolecules. 15:1079-1096 (2014)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (NRF-2021R1I1A1A01059244).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Min Kim.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Statement of human and animal rights

All institutional and national guidelines for the care and use of laboratory animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, HN., Lim, HJ., Park, JY. et al. Effect of modification methods on the physical properties and immunomodulatory activity of particulate β-glucan. Food Sci Biotechnol 33, 1615–1621 (2024). https://doi.org/10.1007/s10068-023-01473-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-023-01473-0

Keywords

Navigation