Skip to main content
Log in

Production and application of xanthan gum—prospects in the dairy and plant-based milk food industry: a review

  • Review
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Xanthan gum (XG) is an important industrial microbial exopolysaccharide. It has found applications in various industries, such as pharmaceuticals, cosmetics, paints and coatings, and wastewater treatment, but especially in the food industry. The thickening and stabilizing properties of XG make it a valuable ingredient in many food products. This review presents a comprehensive overview of the various potential applications of this versatile ingredient in the food industry. Especially in the plant-based food industries due to current interest of consumers in cheaper protein sources and health purposes. However, challenges and opportunities also exist, and this review aims to identify and explore these issues in greater detail. Overall, this article represents a valuable contribution to the scientific understanding of XG and its potential applications in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbou A, Kadri N, Servent A, Ricci J, Madani K, Dornier M, Colligna A, Achir N. Setting up a diagram process for the elaboration of a new plant-based beverage from Pinus halepensis seeds: Selection of unit operations and their conditions. Journal of Food Process Engineering 45: e13943 (2022)

    Article  Google Scholar 

  • Ahmad R, Mirza A. Application of Xanthan gum/n-acetyl cysteine modified mica bionanocomposite as an adsorbent for the removal of toxic heavy metals. Groundwater Sustainable Development 7: 101-108 (2018)

    Article  Google Scholar 

  • Ahmad R, Mirza A. Green synthesis of Xanthan gum/Methionine-bentonite nanocomposite for sequestering toxic anionic dye. Surface Interfaces 8: 65-72 (2017)

    Article  CAS  Google Scholar 

  • Ahmed J, Thomas L, Al-Hazza A. Effects of frozen storage on texture, microstructure, water mobility and baking quality of brown wheat flour/β-glucan concentrate Arabic bread dough. Food Measure 15: 1285-1269 (2021)

    Article  Google Scholar 

  • Akbari M, Eskandari MH, Davoudi Z. Application and functions of fat replacers in low-fat ice cream: A review. Trends in Food Science and Technology 86: 34-40 (2019)

    Article  CAS  Google Scholar 

  • Alkhateeb RS, Vorhölter FJ, Rückert C, Mentz A, Wibberg D, Hublik G, Niehaus K, Pühler A. Genome wide transcription start sites analysis of Xanthomonas campestris pv. campestris B100 with insights into the gum gene cluster directing the biosynthesis of the exopolysaccharide xanthan. Journal of Biotechnology 225: 18-28 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Alzamili AS, Al-Bedrani DI. Study the impact of adding xanthan gum as a fat replacer on the quality characteristics of low-fat oshari-like cheese. Journal of Hygienic Engineering and Design 41: 278-287 (2022)

    Google Scholar 

  • Amanullah A, Satti S, Nienow AW. Enhancing Xanthan fermentations by different modes of glucose feeding. Biotechnological Progress 14: 265-269 (1998)

    Article  CAS  Google Scholar 

  • Anderson AD, Duabert CR, Farkas BE. Rheological characterization of skimmed milk stabilized with carrageenan at high temperature. Journal of Food Science 67: 649-652 (2002)

    Article  CAS  Google Scholar 

  • Antigo JLD, da Silva JM, Bergamasco RC, Madrona GS. Microencapsulation of beet dye (Beta Vulgaris L.) using maltodextrin and xanthan gum as encapsulant agents and application in yogurt. Research, Society and Development 9(12): e14091210896 (2020).

    Article  Google Scholar 

  • Azi F, Tu C, Rasheed HA, Dong M. Comparative study of the phenolics, antioxidant and metagenomic composition of novel soy whey-based beverages produced using three different water kefir microbiota. International Journal of Food Science and Technology 55: 1689-1697(2020)

    Article  CAS  Google Scholar 

  • Babaladimath G, Vishalakshi B, Nandibewoor S. Electrical conducting xanthan gum-graft-polyaniline as corrosion inhibitor for aluminum in hydrochloric acid enviroment. Material Chemistry Physics 205: 171-179 (2018)

    Article  CAS  Google Scholar 

  • Bak JH, Yoo B. Intrinsic viscosity of binary gum mixtures with xanthan gum and guar gum: effect of NaCl, sucrose, and pH. International Journal of Biological Macromolecules 111: 77-81 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Becker A. Challenges and perspectives in combinatorial assembly of novel exopolysaccharide biosynthesis pathways. Frontiers in Microbiology : (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhat IM, Wani MS, Mir SA, Masoodi FA. Advances in xanthan gum production, modifications and its application. Biocatalysis and Agricultural Biotechnology 42: 102328 (2022)

    Article  CAS  Google Scholar 

  • Bhatia SK, Kumar N, Bhatia RK. Stepwise bioprocess for exopolysaccharide production using potato starch as carbon source. 3 Biotech 5: 735-739 (2015)

    Article  PubMed  Google Scholar 

  • Borges C, Moreira A, Vendruscolo C, Ayub M. Influence of agitation and aeration in xanthan production by Xanthomonas campestris pv pruni strain 101. Revista Argentina de Microbiologia 40: 81-85 (2008)

    CAS  PubMed  Google Scholar 

  • Bouyer E, Mekhloufi G, Huang N, Rosilio V, Agnely F. β-Lactoglobulin, gum arabic, and xanthan gum for emulsifying sweet almond oil: formulation and stabilization mechanisms of pharmaceutical emulsions. Colloids Surface A: Physicochemical Engineering Aspect 433: 77-87 (2013)

    Article  CAS  Google Scholar 

  • Bradshaw IJ, Nisbet BA, Kerr MH, Sutherland IW. Modified xanthan-its preparation and viscosity. Carbohydrate Polymers 3: 23-38 (1983)

    Article  CAS  Google Scholar 

  • Brighenti M, Govindasamy-Lucey S, Jaeggi JJ, Johnson ME, Lucey JA. Behavior of stabilizers in acidified solutions and their effect on the textural, rheological, and sensory properties of cream cheese. Journal of Dairy Science 103: 2065-2076 (2019)

    Article  Google Scholar 

  • Cadmus MC, Knutson CA, Lagoda AA, Burton KA. Synthetic media for production of quality xanthan gum in 20 liter fermentors. Biotechnology and Bioengineering 20: 1003-1014 (1978)

    Article  CAS  Google Scholar 

  • CarbonCloud.com. Xanthan gum E415 CarbonCloud footprint at factory. Available from: https://apps.carboncloud.com/climatehub/product-reports/id/13493617534. Accessed August 2, 2023

  • Casas J, Santos V, Garcıá -Ochoa F. Xanthan gum production under several operational conditions: molecular structure and rheological properties. Enzymes and Microbial and Technology 26: 282-291 (2000)

    Article  CAS  Google Scholar 

  • Chakraborty SK, Kotwaliwale N, Navale SA. Selection and incorporation of hydrocolloid for gluten-free leavened millet breads and optimization of the baking process thereof. LWT 119: 108878 (2020)

    Article  CAS  Google Scholar 

  • Chavan S, Baig M. Relationship of biomass and xanthan gum production by xanthomonas campestris: optimization of parameters. Biotechnology Journal Internationl 11: 1-8 (2016)

    Google Scholar 

  • Chen J, Zheng M, Tan KB, Lin J, Chen M, Zhu Y. Polyvinyl alcohol/xanthan gum composite film with excellent food packaging, storage and biodegradation capability as potential environmentally-friendly alternative to commercial plastic bag. International Journal of Biology Macromolecules 212: 402-11 (2022)

    Article  CAS  Google Scholar 

  • Cheng R, Lin L, Zhang Y. Hydrogen peroxide (H2O2) supply significantly improves xanthan gum production mediated by Xanthomonas campestris in vitro. Journal of industrial Microbiology and Biotechnology 39: 799-803 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Council of the European Union and European Parliament. Regulation (EC) No 1333/2008 of the European Parliament and of the Council of 16 December 2008. Available from: https://lexparency.org/eu/32008R1333. Accessed July 21, 2023

  • da Silva JA, Cardoso LG, de Jesus Assis D, Gomes GVP, Oliveira MBPP, de Souza CO, Druzian JI. Xanthan gum production by Xanthomonas campestris pv. campestris IBSBF 1866 and 1867 from lignocellulosic agroindustrial wastes. Applied Biochemistry and Biotechnology 186: 750-763 (2018)

    Article  PubMed  Google Scholar 

  • Dai X, Gao G, Wu M, Wei W, Qu J, Li G, Ma T. Construction and application of a Xanthomonas campestris CGMCC15155 strain that produces white xanthan gum. MicrobiologyOpen 8: 1-9 (2019)

    Article  Google Scholar 

  • Davidson I. Production of polysaccharide by Xanthomonas campestris in continuous culture. FEMS Microbiology Letters 3: 347-349 (1978)

    Article  CAS  Google Scholar 

  • de Mello Luvielmo M, Borges CD, Toyama Dd, Vendruscolo CT, Scamparini AR. Structure of xanthan gum and cell ultrastructure at different times of alkali stress. Brazil Journal of Microbiology 47: 102-109 (2016)

    Article  Google Scholar 

  • de Moraes Filho ML, Busanello M, Prudencio SH, Garcia S. Soymilk with okara flour fermented by Lactobacillus acidophilus: Simplex-centroid mixture design applied in the elaboration of probiotic creamy sauce and storage stability. Lwt Food Science and Technology 1: 339-345 (2018)

    Article  Google Scholar 

  • Demirci AS, Palabiyik I, Apaydın D, Mirik M, Gumus T. Xanthan gum biosynthesis using Xanthomonas isolates from waste bread: process optimization and fermentation kinetics. LWT 101: 40-47 (2019)

    Article  CAS  Google Scholar 

  • Dey R, Chatterji B. P. Sources and methods of manufacturing xanthan by fermentation of various carbon sources. Biotechnology Progress : (2023)

  • Dhankhar J, Kundu, P. Stability Aspects of Non-Dairy Milk Alternatives. pp. 1-28. In: Milk Substitutes-Selected Aspects. Ziarno M, (ed) IntechOpen, London, SW7 2QJ, UK (2021)

  • Donot F, Fontana A, Baccou JC, Schorr-Galindo S. Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydrate Polymers (2012)

  • Dziezak JD. A focus on gums. Food Technology 45: 116-132 (1991)

    Google Scholar 

  • Eastwood MA, Brydon WG, Anderson DMW. The dietary effects of xanthan gum in man. Food Additives and contaminants 4(1): 17-26 (1987)

    Article  CAS  PubMed  Google Scholar 

  • EFSA Panel on Food Additives and Flavourings (FAF), Younes M, Aquilina G, Castle L, Degen G, Engel K, Fowler PJ, et al. Re‐evaluation of xanthan gum (E 415) as a food additive in foods for infants below 16 weeks of age and follow‐up of its re‐evaluation as a food additive for uses in foods for all population groups. European Food Safety Authority Journal 21: e07951 (2023)

  • El-Sayed E, Abd El-Gawad I, Murad H. Salah S. Utilization of laboratory-produced xanthan gum in the manufacture of yogurt and soy yogurt. European Food Research and Technology 215: 298-304 (2002)

    Article  CAS  Google Scholar 

  • Esgalhado ME, Roseiro JC, Collaço MT. Interactive effects of pH and temperature on cell growth and polymer production by Xanthomonas campestris. Process Biochemistry 30: 667-671 (1995)

    Article  CAS  Google Scholar 

  • Fan J, Wang K, Liu M, He Z. In vitro evaluations of konjac glucomannan and xanthan gum mixture as the sustained release material of matrix tablet. Carbohydrate Polymers 73: 241-247 (2008)

    Article  CAS  Google Scholar 

  • FAO. Milk and dairy products in human nutrition. Food and Agriculture Organization of the United Nations, Rome, Italy. pp 41-90 (2013)

  • Fernandes Md, Lima FS, Rodrigues D, Handa C, Guelfi M, Garcia S, Ida EI. Evaluation of the isoflavone and total phenolic contents of kefir-fermented soymilk storage and after the in vitro digestive system simulation. Food Chemistry 229: 373-380 (2017)

    Article  CAS  Google Scholar 

  • Fiume MM, Heldreth B, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JGJr, Shank RC, Slaga TJ, Snyder PW, Andersen FA. Safety assessment of microbial polysaccharide gums as used in cosmetics. International journal of toxicology, 35(1): 5S-49S (2016)

    Article  Google Scholar 

  • Food and Drug Administration. CFR—Code of Federal Regulations Title 21. Available at: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm. Accessed July 21, 2023

  • Freitas F, Alves VD, Reis MA. Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends in Biotechnology 29: 388-398 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Freitas F, Alves VD, Reis, MAM. Bacterial polysaccharides: Production and applications in cosmetic industry. pp. 2017-2043. In: Polysaccharides: Bioactivity Biotechnology. Ramawat, K, Mérillon, JM (eds). Springer, Cham, Switzerland. (2014)

  • Fu D, Deng S, McClements DJ, Zhou L, Zou L, Yi J, Liu C, Liu W. Encapsulation of β-carotene in wheat gluten nanoparticle-xanthan gum-stabilized Pickering emulsions: enhancement of carotenoid stability and bioaccessibility. Food Hydrocolloids 89: 80-89 (2019)

    Article  CAS  Google Scholar 

  • Funahashi H, Yoshida T, Taguchi H. Effect of glucose concentration on xanthan gum production by Xanthomonas campestris. Journal of Fermentation Technology 65: 603-606 (1987)

    Article  CAS  Google Scholar 

  • Garcia-Ochoa F, Casas JA, Mohedano AF. Precipitation of xanthan gum from solutions and fermentation broths. Separation Science and Technology 28: 1303-1313 (1993)

    Article  Google Scholar 

  • García-Ochoa F, Castro EG, Santos VE. Oxygen transfer and uptake rates during xanthan gum production. Enzymes and Microbial Technology 27: 680-690 (2000a)

    Article  Google Scholar 

  • García-Ochoa F, Santos V, Alc´on A. Simulation of xanthan gum production by a chemically structured kinetic model. Mathematical Computation Simulation 42: 187-195 (1996)

    Article  Google Scholar 

  • García-Ochoa F, Santos V, Casas J, G´omez E. Xanthan gum: production, recovery, and properties. Biotechnological Advancemnets 18: 549-579 (2000b)

  • Ghebremedhin M, Schreiber C, Zielbauer B, Dietz N, Vilgis TA. Interaction of xanthan gums with galacto- and glucomannans. Part II: Heat induced synergistic gelation mechanism and their interaction with salt. Journal of Physics: Materials 4: e019501(2021)

    Article  ADS  Google Scholar 

  • Gilani SL, Najafpour GD, Heydarzadeh HD, Zare H. Kinetiˇcki modeli za produkciju ksantana Pomo´cu Xanthomonas campestris iz Melase. Chemical Industry and Chemical Engineering Quarterly 17: 179-187 (2011)

    Article  CAS  Google Scholar 

  • Gondim TS, Pereira RG, Fiaux SB. Xanthan gum production by Xanthomonas axonopodis pv. mangiferaeindicae from glycerin of biodiesel in different media and addition of glucose. Acta Scientiarum. Biological Science 41(1): 43661 (2019)

    Article  Google Scholar 

  • Graça C, Marques D, Sousa I, Monteiro ARG. Xanthan gum as an alternative to replace the fat for coating and flavoring the extruded snacks. Journal of Food Science and Technolology 57: 3151-3156 (2020)

    Article  Google Scholar 

  • Gumus T, Demirci A, Mirik M, Arici M, Aysan Y. Xanthan gum production of Xanthomonas spp. isolated from different plants. Food Science and Biotechnology 19: 201-206 (2010)

    Article  CAS  Google Scholar 

  • Gunasekar V, Reshma KR, Greeshma T, Gowdhaman D, Ponnusami V. Xanthan from sulphuric acid treated tapioca pulp: Influence of acid concentration on xanthan fermentation. Carbohydrate Polymers 102: 669-673 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Habibi H, Khosravi-Darani K. Effective variables on production and structure of xanthan gum and its food application: a review. Biocatalysis and Agricultural Biotechnology 10: 130-140 (2017)

    Article  CAS  Google Scholar 

  • Hasnain SM, Hasnain MS, Nayak AK. Natural Polysaccharides: Sources and extraction methodologies. pp. 1-14. In: Natural polysaccharides in drug delivery and biomedical applications. Hasnain MS, Nayak AK (eds). ACADEMIC PRESS, 125 London Wall, London EC2Y 5AS, United Kingdom (2019)

  • Hassan AN, Corredig M, Frank JF. Capsule formation by nonropy starter cultures affects the viscoelastic properties of yogurt during structure formation. Journal of Dairy Science 85: 716-720 (2002)

    Article  CAS  PubMed  Google Scholar 

  • Hematyar N, Samarin AM, Poorazarang H, Elhamirad AH. Effect of gums on yogurt characteristics. World Applied Sciences Journal 20: 661-665 (2012)

    CAS  Google Scholar 

  • Huang J, Zhong C, Yang Y. Aggregating thermodynamic behavior of amphiphilic modified xanthan gum in aqueous solution and oil-flooding properties for enhanced oil recovery. Chemical Engineering Science 216: 115476 (2020)

    Article  CAS  Google Scholar 

  • İçier F, Gündüz GT, Yılmaz B, Memeli Z. Changes on some quality characteristics of fermented soy milk beverage with added apple juice. LWT—Food Science and Technology 63: 57-64 (2015)

    Article  Google Scholar 

  • Infee Sherley K. Priyadharshini RD. Review on production of xanthan gum in batch and continuous reactors. International Journal of ChemTech Research 8: 711-717 (2015)

    Google Scholar 

  • Jadav M, Pooja D, Adams DJ, Kulhari H. Advances in xanthan gum-based systems for the delivery of therapeutic agents. Pharmaceutics 15: 402 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang HY, Zhang K, Chon BH, Choi HJ. Enhanced oil recovery performance and viscosity characteristics of polysaccharide xanthan gum solution. Journal of Industrial and Engineering Chemistry 21: 741-745 (2015)

    Article  CAS  Google Scholar 

  • Jazini M, Ameri A, Sohrabi D, Karimi K. Efficient xanthan gum production from phosphoric acid-pretreated cedar wood and elm wood. Advanced Research Microbial Metabolites and Technology 1: 51-64 (2018)

    Google Scholar 

  • Jeanes A, Pittsley JE, Senti FR. Polysaccharide B-1459: a new hydrocolloid polyelectrolyte produced from glucose by bacterial fermentation. Journal of Applied Polymer Science 5: 519-526 (1961)

    Article  CAS  Google Scholar 

  • Jesus M, Mata F, Batista RA, Ruzene DS, Albuquerque-Júnior R, Cardoso JC, Vaz-Velho M, Pires P, Padilha FF, Silva DP. Corncob as carbon source in the production of xanthan gum in different strains Xanthomonas sp. Sustainability, 15: 2287 (2023)

    Article  CAS  Google Scholar 

  • Ji L, den Otter D, Cornacchia L, Sala G, Scholten E. Role of polysaccharides in tribological and sensory properties of model dairy beverages. Food Hydrocolloids 134: (2023)

    Article  CAS  Google Scholar 

  • Kadağan S, Arslan S. Effect of storage and some hydrocolloid blends on physicochemical textural and sensory characteristics of keşkül, a dairy dessert. Akademik Gıda 19: 398-403 (2021)

    Article  Google Scholar 

  • Kaewmungkun K, Limpisophon K. Characteristics of coconut protein-enriched lipid and the effects of pH, NaCl, and xanthan gum on its dispersibility. Journal of the Saudi Society of Agricultural Sciences: (2023)

    Google Scholar 

  • Kailaje J, Sonawane SK, Abraham George P A, Dabade A, Bhushette P. Development of a dairy analog with combinations of non-dairy milk. Industrial Biotechnology 18: 286-292 (2022)

    Article  CAS  Google Scholar 

  • Kerdsup P, Tantratian S, Sanguandeekul R, Imjongjirak C. Xanthan production by mutant strain of Xanthomonas campestris TISTR 840 in raw cassava starch medium. Food Bioprocess Technology 4: 1459-1462 (2011)

    Article  CAS  Google Scholar 

  • Khalid N, Ramzan R, Zahoor T, Muhammad Z, Tehseen S, Aziz M, Batool R. Exploring the prebiotic potential of xanthan gum and its modified forms for the production of synbiotic yogurt. Journal of Food Processing and Preservation 46(11): e17053 (2022)

    Article  CAS  Google Scholar 

  • Khosravi-Darani K, Reyhani FS, Nasernejad B, Farhadi GB. Bench scale production of xanthan from date extract by Xanthomonas campestris in submerged fermentation using central composite design. African Journal of Biotechnology 10: 13520-13527 (2011)

    CAS  Google Scholar 

  • Kinkelaar D, Palav T. Rich Products Corp, assignee. Plant-Based Culinary Creme. U.S. Patent US20190116852A1 (2019)

  • Kizzie-Hayford N, Ampofo-Asiama J, Zahn S, Jaros D, Rohm H. Enriching tiger nut milk with sodium caseinate and xanthan gum improves the physical stability and consumer acceptability. Journal of Food Technology Research 8: 40-4 (2021)

    Article  Google Scholar 

  • Kojić JRS, Vrvić MM, Gojgić-Cvijović GĐ, Beškoski VP, Jakovljević DM. Microbial polysaccharides: Between oil wells, food and drugs. pp. 313-327.In: Nedović V, Raspor P, Lević J, Tumbas Šaponjac V, Barbosa-Cánovas G (eds). Emergimg and traditional technologies for Safe, Healthy and Quality Food. Food Engineering Series. Springer, Cham, Switzerland. (2016)

  • Kool MM, Gruppen H, Sworn G, Schols HA. The influence of the six constituent xanthan repeating units on the order-disorder transition of xanthan. Carbohydrate Polymers 104: 94-100 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Kot A, Kamińska-Dwórznicka A, Barańska A. Study of the properties of vegan ice cream based on almond drink. Zeszyty Problemowe Postępów Nauk Rolniczych 600: 21-30 (2020)

    Article  Google Scholar 

  • Kuppuswami GM. Fermentation (industrial): Production of xanthan gum. pp. 816-821. In: Encyclopedia of Food Microbiology, Second edition. Batt CA, Tortorello ML, Elsevier Academic Press, USA (2014)

  • L´eonard AF, Job N. Safe and green Li-ion batteries based on LiFePO4 and Li4Ti5O12 sprayed as aqueous slurries with xanthan gum as common binder. Materials Today Energy 12: 168-178 (2019)

    Article  Google Scholar 

  • Ladjvardi ZS, Yarmand MS, Djomeh ZE, Nasalji AN. Synergistic effect of locust bean and xanthan gum on viability of probiotic bacteria and water holding capacity of synbiotic yogurt from camel milk. Iranian Food Science and Technology Research Journal 16(1): 131-143 (2020)

    Google Scholar 

  • Leela J, Sharma G. Studies on xanthan production from Xanthomonas compestris. Bioprocess Engineering 23: 687-689 (2000)

    Article  Google Scholar 

  • Letisse F, Chevallereau P, Simon JL, Lindley ND. Kinetic analysis of growth and xanthan gum production with Xanthomonas compestris on sucrose, using sequentially consumed nitrogen sources. Applied Microbiology and Biotechnology 55: 417-422 (2001)

    Article  CAS  PubMed  Google Scholar 

  • Li C, Li W, Chen X, Feng M, Rui X, Jiang M, Dong M.. Microbiological, physicochemical and rheological properties of fermented soymilk produced with exopolysaccharide (EPS) producing lactic acid bacteria strains. LWT—Food Science and Technology 2: 477-485 (2014)

    Article  Google Scholar 

  • Li J, Sun J, Chang C, Gu L, Su Y, Zhai J, Yang Y. Influence of selected gums on the foaming properties of egg white powders: Kinetics of foam formation and baking performance. Food Hydrocolloids 139: 108529 (2023)

    Article  CAS  Google Scholar 

  • Limbu PK, Khadka DB, Maskey B. Development of yogurt analogue by blending soy-maize milk. Tribhuvan University Journal of Food Science and Technology 1(1): 57-64 (2022)

    Article  Google Scholar 

  • Liu J, Tan F, Liu X, Yi R, Zhao X. Grape skin fermentation by Lactobacillus fermentum CQPC04 has anti-oxidative effects on human embryonic kidney cells and apoptosis-promoting effects on human hepatoma cells. RSC Advances 10: 4607-4620 (2020)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Lopes BM, Lessa VL, Silva BM, Carvalho Filho MAS, Schnitzler E, Lacerda LG. Xanthan gum: properties, production conditions, quality and economic perspective. Journal of Food and Nutrition Research. 54: 185-194 (2015)

    Google Scholar 

  • Lutfi Z, Alam F, Nawab A, Haq A, Hasnain A. Effect of NaCl on physicochemical properties of xanthan gum—water chestnut starch complexes. International Journal of Biological Macromolecules 131: 557-563 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Madsen SK, Thulesen ET, Mohammadifar MA, Bang-Berthelsen CH. Chufa drink: Potential in developing a new plant-based fermented dessert. Foods 10: 3010 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmoud YA, El-Naggar ME, Abdel-Megeed A, El-Newehy M. Recent advancements in microbial polysaccharides: Synthesis and application. Polymers 13: 4136 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makinen OE, Wanhalinna V, Zannini E, Arendt EK. Foods for special dietary needs: Non-dairy plant-based milk substitutes and fermented dairy-type products. Critical Reviews in Food Science and Nutrition, 56: 339-349 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow MA, Verdier V, Beer SV, Machado MA, Toth IA. Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology 13: 614-629 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  • Maroufi LY, Norouzi R, Ramezani S, Ghorbani M. Novel electrospun nanofibers based on gelatin/oxidized xanthan gum containing propolis reinforced by Schiff base cross-linking for food packaging. Food Chemistry 416: 135806 (2023)

    Article  Google Scholar 

  • Mattison CP, Aryana KJ, Clermont K, Prestenburg E, Lloyd SW, Grimm CC, Wasserman RL. Microbiological, physicochemical, and immunological analysis of a commercial cashew nut-based yogurt. International Journal of Molecular Sciences 21: 8267 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauro CS, Fernandes MT, Farinazzo FS, Garcia S. Characterization of a fermented coconut milk product with and without strawberry pulp. Journal of Food Science and Technology 59: 2804-2812 (2022)

    Article  CAS  PubMed  Google Scholar 

  • McClements DJ, Newman E, McClements IF. Plant-based milks: A review of the science underpinning their design, fabrication, and performance. Comprehensive Reviews in Food Science and Food Safety 18: 2047-2067 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Mehanna N, Swelam S, Almqbil N, Allah WF, Hafez Y. Improvement of the dairy products by wheat germ powder. Fresenius Environmental Bulletin a 29(12): 10954-10959 (2020)

    CAS  Google Scholar 

  • Miano TF. Foaming stability of yogurt smoothie with whey powder and xanthan gum. Pakistan Journal of Science 73 (2022)

  • Mohsin A, Zhang K, Hu J, Tariq M, Zaman WQ, Khan IM, Zhuang Y, Guo M. Optimized biosynthesis of xanthan via effective valorization of orange peels using response surface methodology: a kinetic model approach. Carbohydrate Polymers 181: 793-800 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Molina O, Fitzsimons R, Perotti N. Effect of corn steep liquor on xanthan production by Xanthomonas campestris. Biotechnology Letter 155(15): 495-498 (1993)

    Article  Google Scholar 

  • Moravej R, Alavi SM, Azin M, Salmanian AH. Production and physicochemical characterization of xanthan gum by native lactose consuming isolates of Xanthomonas citri subsp. Citri. Ukrainian Biochemistry Journal 92(1): 92-102 (2020)

    Article  CAS  Google Scholar 

  • Moritz G, Schmid J, Sieber V. In-depth rheological characterization of genetically modified xanthan-variants. Carbohydrate Polymers 213: 236-246 (2019)

    Article  Google Scholar 

  • Moshaf S, Hamidi-Esfahani Z, Azizi M. Statistical optimization of xanthan gum production and influence of airflow rates in lab-scale fermentor. Applied Food Biotechnology 1(1): 17-24 (2014)

    Google Scholar 

  • Murad HA, Abo-Elkhair AG, Azzaz HH. Production of xanthan gum from nontraditional substrates with perspective of the unique properties and wide industrial applications. JSMC Microbiology 1: 6 (2019)

    Google Scholar 

  • Murad HA, Mohamed SH, Abu-El- Khair AG, Azab EA, Khalil MA. Impact of xanthan gum as fat replacer on characteristics of low fat Kariesh cheese. International Journal of Dairy Science 11: 106-113 (2016)

    Article  CAS  Google Scholar 

  • Mygdalia A, Sfetsas T, Dimitropoulou G, Zioupou S, Mitsopoulos T, Lithoxopoulos P, Ioannou C, Katsantonis D. Recipe for brown rice milk-based vegan ice cream. Asian Food Science Journal 22: 33-39 (2023)

    Article  Google Scholar 

  • Nasr S, Soudi M, Haghighi M. Xanthan production by a native strain of Xanthomonas campestris and evaluation of application in EOR. Pakistan Journal of Biological Sciences 10(17): 3010-3013 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Nateghi L, Roohinejad S, Totosaus A, Mirhosseini H, Shuhaimi M, Meimandipour A, Omidizadeh A, Abd Manap MY. Optimization of textural properties and formulation of reduced fat Cheddar cheeses containing fat replacers. Journal of Food, Agriculture and Environment 10: 46-54 (2012)

    CAS  Google Scholar 

  • Nehaa B, Sabitha V, Mathushree R, Sudha A, Sangeetha V. Development of plant-based yogurt. Foods and Raw Materials 10: 274-282 (2022)

    Google Scholar 

  • Nepovinnykh NV, Kliukina ON, Belova NM, Yeganehzad S. Physico-chemical and texture properties of gelatin-free jelly desserts. Food Processing: Techniques and Technology 49(1): 43-49 (2019)

    Google Scholar 

  • Nordin NZ, Rashidi AR, Dailin DJ, Abd Malek R, Izyan Wan Azelee N, Abd Manas NH, Selvamani S,… El Enshasy H. Xanthan biopolymer in pharmaceutical and cosmeceutical applications: Crtical review. Bioscience Research 17(1): 205-220 (2020)

    Google Scholar 

  • Noreña C, Bayarri S, Costell E. Effects of xanthan gum additions on the viscoelasticity, structure and storage stability characteristics of prebiotic custard desserts. Food Biophysics 10: 116-128 (2014)

    Article  Google Scholar 

  • Oberg EN, Larsen KM, Irish DA, Motawee M, McMahon DJ. Increasing stringiness of low-fat mozzarella cheese using polysaccharides. Journal of Dairy Science 98: 4243-4254 (2010)

    Article  Google Scholar 

  • Ostrowski MP, Leanti La Rosa S, Kunath BJ, Robertson A, Pereira G, et al. Mechanistic insights into consumption of the food additive xanthan gum by the human gut microbiota. Nature microbiology 7: 556-569 (2022)

    Article  CAS  PubMed  Google Scholar 

  • Ozdal M, Kurbanoglu EB. Use of chicken feather peptone and sugar beet molasses as low cost substrates for xanthan production by Xanthomonas campestris MO-03. Fermentation 5(1): 9 (2019)

    Article  CAS  Google Scholar 

  • Palaniraj A, Jayaraman V. Production, recovery and applications of xanthan gum by Xanthomonas campestris. Journal of Food Engineering 106(1): 1-12 (2011)

    Article  CAS  Google Scholar 

  • Pang Z, Cao J, Zheng Y, Luo Y, Liu X, Xiao L. Effects of different types of hydrocolloids on texture and rheological properties of soymilk yogurt. Food and Fermentation Industries 45: 1-6 (2019)

    Google Scholar 

  • Pang Z, Luo Y, Li B, Zhang M, Liu X. Effect of different hydrocolloids on tribological and rheological behaviors of soymilk gels. Food Hydrocolloids 101: 105558 (2020)

    Article  CAS  Google Scholar 

  • Papagianni M, Psomas S, Batsilas L, Paras S, Kyriakidis D, Liakopoulou-Kyriakides M. Xanthan production by Xanthomonas campestris in batch cultures. Process Biochemistry 37: 73-80 (2001)

    Article  CAS  Google Scholar 

  • Papalia IS, Londero PMG, Katsuda MS, Rosa CS. Development of cheese bread with the addition of guar gum and xanthan gum as a substitute for partial fat. International Food Research Journal 22: 2050-2056 (2015)

    CAS  Google Scholar 

  • Parente E, Andrade AO, Ares G, Russo F, Jimenez-Kairuz AF. Bioadhesive hydrogels for cosmetic applications. International Journal of Cosmetic Science 37: 511-518 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Park YW, Oglesby J, Hayek SA, Aljaloud SO, Gyawali R, Ibrahim SA. Impact of different gums on textural and microbial properties of goat milk yogurts during refrigerated storage. Foods 8: 169 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pastor MV, Costell E, Izquierdo L, Dur´an L. Effects of concentration, pH and salt content on flow characteristics of xanthan gum solutions. Food Hydrocolloids 8: 265-275 (1994)

    Article  Google Scholar 

  • Petri DF. Xanthan gum: a versatile biopolymer for biomedical and technological applications. Journal of Applied Polymer Science 132: (2015)

  • Psomas S, Liakopoulou-Kyriakides M, Kyriakidis D. Optimization study of xanthan gum production using response surface methodology. Biochemical Engineering Journal 35: 273-280 (2007)

    Article  CAS  Google Scholar 

  • Rafiq L, Zahoor T, Sagheer A, Khalid N, Rahman UU, Liaqat A. Augmenting yogurt quality attributes through hydrocolloidal gums. Asian-Australasian journal of animal sciences 33: 323-331 (2020)

    Article  CAS  PubMed  Google Scholar 

  • Raschip IE, Fifere N, Varganici CD, Dinu MV. Development of antioxidant and antimicrobial xanthan-based cryogels with tuned porous morphology and controlled swelling features. International Journal of Biological Macromolecules 156: 608-620 (2020)

    Article  CAS  PubMed  Google Scholar 

  • Rashidi AR, Azelee NI, Zaidel DN, Chuah LF, Bokhari A, El Enshasy HA, Dailin DJ. Unleashing the potential of xanthan: a comprehensive exploration of biosynthesis, production, and diverse applications. Bioprocess and Biosystems Engineering : 1-7 (2023)

    Article  CAS  PubMed  Google Scholar 

  • Reinoso D, Martín-Alfonso MJ, Luckham PF, Martínez-Boza FJ. Rheological characterisation of xanthan gum in brine solutions at high temperature. Carbohydrate Polymers 203: 103-109 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Rinaudo M, Moroni A. Rheological behavior of binary and ternary mixtures of polysaccharides in aqueous medium. Food Hydrocolloids 23: 1720-1728 (2009)

    Article  CAS  Google Scholar 

  • Rončević Z, Grahovac J, Dodić S, Vučurović D, Dodić J. Utilisation of winery wastewater for xanthan production in stirred tank bioreactor: bioprocess modelling and optimization. Food Bioproducts Processing 117: 113-125 (2019b)

    Article  Google Scholar 

  • Rončević ZZ, Zahović IE, Pajčin IS, Grahovac MS, Dodić SN, Grahovac JA, Dodić JM. Effect of carbon sources on xanthan production by Xanthomonas spp. isolated for pepper leaves. Food and Feed Research 46(1): 11-21 (2019a)

    Article  Google Scholar 

  • Rosalam S, Krishnaiah D, Bono A. Cell free xanthan gum production using continuous recycled packed fibrous-bed bioreactor-membrane. Malaysian Journal of Microbiology 4(1): 1-5 (2008)

    Google Scholar 

  • Rosalam S. England R. Review of xanthan gum production from unmodified starches by Xanthomonas campestris sp. Enzyme and Microbial Technology 39: 197-207 (2006)

    Article  CAS  Google Scholar 

  • Rosida R, Sarofa U, Wardhani RRRP. The characteristics of synbiotic yoghurt ice cream made from ice cream mix and purple yam yoghurt (Dioscorea alata). Journal of Functional Food and Nutraceutical 3: 57-62 (2022)

    Article  Google Scholar 

  • Rottava I, Batesini G, Silva MF, Lerin L, de Oliveira D, Padilha FF, Toniazzo G, Mossi A, Cansian RL, Di Luccio M, Treichel H. Xanthan gum production and rheological behavior using different strains of Xanthomonas sp. Carbohydrate Polymers 77: 65-71 (2009)

    Article  CAS  Google Scholar 

  • Rukmanikrishnan B, Ismail FR, Manoharan RK, Kim SS, Lee J. Blends of gellan gum/xanthan gum/zinc oxide based nanocomposites for packaging application: rheological and antimicrobial properties. International Journal of Biological Macromolecules 148: 1182-1189 (2020)

    Article  CAS  PubMed  Google Scholar 

  • Saha D, Bhattacharya S. Hydrocolloids as thickening and gelling agents in food: a critical review. Journal of Food Science and Technology 47: 587-97 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saharudin SH, Ahmad Z, Basri M. Role of xanthan gum on physicochemical and rheological properties of rice bran oil emulsion. International Food Research Journal 23: 1361-1366 (2016)

    Google Scholar 

  • Salah RB, Chaari K, Besbes S, Ktari N, Blecker C, Deroanne C, Attia H. Optimization of xanthan gum production by palm date (Phoenix dactylifera L.) juice by-products using response surface methodology. Food Chemistry 121: 627-633 (2010)

    Article  Google Scholar 

  • Salari S, Zanganeh M, Fadavi A, Ahmadi Z. Effect of xanthan gum and carboxymethyl cellulose on physical properties of cream cheese. International Journal of Advancements in Technology 8: 176 (2017)

    Google Scholar 

  • Sánchez-Ortega EM, Hernández-Calette A, Hernández-Montes A. Influence of locust bean and xanthan gums on the stability and acceptability of dairy cream. Ingeniería Agrícola y Biosistemas 9: (2017)

    Article  Google Scholar 

  • Santos DC, Oliveira Filho JG, Santana AC, Freitas BS, Silva FG, Takeuchi KP, Egea MB. Optimization of soymilk fermentation with kefir and the addition of inulin: Physicochemical, sensory and technological characteristics. LWT- Food Science and Technology, 104: 30-37 (2019)

    Article  Google Scholar 

  • Santos FP, Oliveira Junior AM, Nunes Pacheco T, De Farias Silva CE, Abud De Souza AK. Bioconversion of agro-industrial wastes into xanthan gum. Chemical Engineering Transactions 49: 145-150 (2016)

    Google Scholar 

  • Sattar MU, Sameen A, Huma N, Shahid M. Exploit fat mimetic potential of different hydrocolloids in low fat mozzarella cheese. Journal of Food and Nutrition Research 3: 518-525 (2015)

    CAS  Google Scholar 

  • Shehni SA, Soudi MR, Hosseinkhani S, Behzadipour N. Improvement of xanthan gum production in batch culture using stepwise acetic acid stress. African Journal of Biotechnology 10: 19425-19428 (2011)

    CAS  Google Scholar 

  • Shendi EG, Asl AK, Mortazavi A, Tavakulipor H, Afshari H, Ebadi AG. The effect of xanthan gum using on improving texture and rheological properties of Iranian low fat white cheese. Middle-East Journal of Scientific Research 6: 346-353 (2010)

    CAS  Google Scholar 

  • Shu C, Yang S. Effects of temperature on cell growth and xanthan production in batch cultures of Xanthomonas campestris. Biotechnology and Bioengineering 35: 454-468 (1990)

    Article  CAS  PubMed  Google Scholar 

  • Sikora M, Kowalski S, Tomasik P, Sady M. Rheological and sensory properties of dessert sauces thickened by starch-xanthan gum combinations. Journal of Food Engineering 79: 1144-1151 (2007)

    Article  CAS  Google Scholar 

  • Silva MF, Fornari RC, Mazutti MA, de Oliveira D, Padilha FF, Cichoski AJ, Cansian RL, Di Luccio M, Treichel H. Production and characterization of xanthan gum by Xanthomonas campestris using cheese whey as sole carbon source. Journal of Food Engineering 90: 119-123 (2009)

    Article  CAS  Google Scholar 

  • Smith JH, Pace GW. Recovery of microbial polysaccharides. Journal of Chemical Technology and Biotechnology 32: 119-129 (1982)

    Article  CAS  Google Scholar 

  • Soleimani-Rambod A, Zomorodi S, Naghizadeh Raeisi S, Khosrowshahi Asl A, Shahidi S-A. The effect of xanthan gum and flaxseed mucilage as edible coatings in cheddar cheese during ripening. Coatings 8: 80 (2018)

    Article  Google Scholar 

  • Soleymanpour Z, Nikzad M, Talebnia F, Niknezhad V. Xanthan gum production from acid hydrolyzed broomcorn stem as a sole carbon source by Xanthomonas campestris. 3 Biotech 8: 296 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  • Song X, Sun X, Ban Q, Cheng J, Zhang S, Guo M. Gelation and microstructural properties of a millet-based yogurt-like product using polymerized whey protein and xanthan gum as thickening agents. Journal of Food Science 85(11): 3927-3933 (2020)

    Article  CAS  PubMed  Google Scholar 

  • Souw P, Demain A. Nutritional studies on xanthan gum production by Xanthomonas compestris NRRL B1459. Applied and Environmental Microbiology 37: 1186-1192 (1979)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Steffens T, Vorhölter FJ, Teckentrup J, Hublik G, Walhorn V, Anselmetti D, Pühler A, Niehaus K, Ortseifen V. Two Flagellar mutants of Xanthomonas campestris are characterized by enhanced xanthan production and higher xanthan viscosity. Journal of Biotechnology 347: 9-17 (2022)

    Article  CAS  PubMed  Google Scholar 

  • Suryawanshi N, Naik S, Eswari JS. Exopolysaccharides and their applications in food processing industries. Food Science and Applied Biotechnology 5(1): 22-44 (2022)

    Article  Google Scholar 

  • Tako M, Nakamura S. Rheological properties of deacetylated xanthan in aqueous media. Agricultural and Biological Chemistry 48(12): 2987-2993 (1984)

    CAS  Google Scholar 

  • Tao Y, Zhang R, Xu W, Bai Z, Zhou Y, Zhao S, et al. Rheological behavior and microstructure of release-controlled hydrogels based on xanthan gum crosslinked with sodium trimetaphosphate. Food Hydrocolloids 52: 923-33 (2016)

    Article  CAS  Google Scholar 

  • Thakur S, Pandey S, Arotiba OA. Sol-gel derived xanthan gum/silica nanocomposite—a highly efficient cationic dyes adsorbent in aqueous system. International Journal of Biological Macromolecules 103: 596-604 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Tidona F, Francolino S, Zhang H, Contarini G, Cui SW, Giraffa G, Carminati D. Design of a starter culture to produce a reduced-fat soft cheese with added bio-value. Journal of Food and Nutrition Research 55(1): 33-39 (2016)

    CAS  Google Scholar 

  • Toniazzo T, Berbel IF, Cho S, Favaro-Trindade CS, Moraes ICF, Pinho SC. β-carotene-loaded liposome dispersions stabilized with xanthan and guar gums: Physico-chemical stability and feasibility of application in yogurt. LWT Food Science and technology 59: (2014)

    Article  CAS  Google Scholar 

  • Toro-Funes N, Bosch-Fuste J, Latorre-Moratalla M, Veciana-Nogues MT, Vidal- Carou MC. Isoflavone profile and protein quality during storage of sterilised soymilk treated by ultra high pressure homogenisation. Food Chemistry 167: 78-83 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Tuteja M, Nagpal K. Recent advances and prospects for plant gum-based drug delivery systems: a comprehensive review. Critical Reviews in Therapeutic Drug Carrier Systems 40: (2023)

    Article  PubMed  Google Scholar 

  • Urlacher B, Noble O, Xanthan gum. pp. 284-311. In: Thickening and gelling agents for food. Imeson AP (ed). Springer New York, NY (1997)

  • Uruc K, Tekin A, Sahingil D, Hayaloglu AA. An alternative plant-based fermented milk with kefir culture using apricot (Prunus armeniaca L.) seed extract: Changes in texture, volatiles and bioactivity during storage. Innovative Food Science and Emerging Technologies 82: 103189 (2022)

    Article  CAS  Google Scholar 

  • Vazquez-Solorio SC, Vega-Méndez DD, Sosa-Herrera MG, Martínez-Padilla LP. Rheological properties of emulsions containing milk proteins mixed with xanthan gum. Procedia Food Science 1: 335-339 (2011)

    Article  CAS  Google Scholar 

  • Vuyst LD, Loo JV, Vandamme E. Two-step fermentation process for improved xanthan production by Xanthomonas campestris NRRL-B-1459. Journal of Chemical Technology and Biotechnolology 39: 263-273 (1987)

    Article  Google Scholar 

  • Wu M, Qu J, Tian, Zhao X, et al. Tailor-made polysaccharides containing uniformly distributed repeating units based on the xanthan gum skeleton. International Journal of Biological Macromolecules 131: 646-653 (2019)

  • Xanthan Gum Market. Xanthan gum market 2023. Available from: https://marketresearch.biz/report/xanthan-gum-market.html. Accessed July 18, 2023.

  • Yan L, Yu D, Liu R, Jia Y, Zhang M, Wu T, Sui W. Microstructure and meltdown properties of low-fat ice cream: Effects of microparticulated soy protein hydrolysate/xanthan gum (MSPH/XG) ratio and freezing time. Journal of Food Engineering 291: (2021)

    Article  CAS  Google Scholar 

  • Yang M, Yang X, Chen X, Wang J, Liao Z, Wang L, Zhang Q, Fang X. Effect of kefir on soybean isoflavone aglycone content in soymilk kefir. Frontiers in Nutrition 7: 587665 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang X. Effects of carrageenan and xanthan gum on texture of processed acid-coagulated cheese. Food Science 33: 93-97 (2012)

    Google Scholar 

  • Yin M, Yang D, Lai S, Yang H. Rheological properties of xanthan-modified fish gelatin and its potential to replace mammalian gelatin in low-fat stirred yogurt. LWT Food Science and technology 147: (2021)

    Article  CAS  Google Scholar 

  • Yuan S, Liang J, Zhang Y, Han H, Jiang T, Liu Y, et al. Evidence from thermal aging indicating that the synergistic effect of glyoxal and sodium sulfite improved the thermal stability of conformational modified xanthan gum. Polymers 14: 243 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue Y, Shen M, Qianqian S, Jianhua X. Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydrate Polymer 183: 91-101 (2018)

    Article  Google Scholar 

  • Zhang Z, Chen H. Fermentation performance and structure characteristics of xanthan produced by Xanthomonas campestris with a glucose/xylose mixture. Applied Biochemistry and Biotechnology 160: 1653-1663 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Zheng M, Chen J, Tan KB, Chen M, Zhu Y. Development of hydroxypropyl methylcellulose film with xanthan gum and its application as an excellent food packaging bio-material in enhancing the shelf life of banana. Food Chemistry 374: 131794 (2022)

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Fei, Y, Yang Y, Jin Z, Yu B, Li L. A potential flavor culture: Lactobacillus harbinensis M1 improves the organoleptic quality of fermented soymilk by high production of 2 , 3- butanedione and acetoin. Food Microbiology 91: 103540 (2020)

    Article  CAS  PubMed  Google Scholar 

  • Ziaolhagh SH, Jalali H. Physicochemical properties and survivability of probiotics in bio-doogh containing wild thyme essence and xanthan gum. International Food Research Journal 24: 1805-1810 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

The research funding from the Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Vincent Asase.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asase, R.V., Glukhareva, T.V. Production and application of xanthan gum—prospects in the dairy and plant-based milk food industry: a review. Food Sci Biotechnol 33, 749–767 (2024). https://doi.org/10.1007/s10068-023-01442-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-023-01442-7

Keywords

Navigation