Skip to main content
Log in

An insight into the utilization of microbial biosurfactants pertaining to their industrial applications in the food sector

  • Invited Review
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Microbial biosurfactants surpass synthetic alternatives due to their biodegradability, minimal toxicity, selective properties, and efficacy across a wide range of environmental conditions. Owing to their remarkable advantages, biosurfactants employability as effective emulsifiers and stabilizers, antimicrobial and antioxidant attributes, rendering them for integration into food preservation, processing, formulations, and packaging. The biosurfactants can also be derived from various types of food wastes. Biosurfactants are harnessed across multiple sectors within the food industry, ranging from condiments (mayonnaise) to baked goods (bread, muffins, loaves, cookies, and dough), and extending into the dairy industry (cheese, yogurt, and fermented milk). Additionally, their impact reaches the beverage industry, poultry feed, seafood products like tuna, as well as meat processing and instant foods, collectively redefining each sector’s landscape. This review thoroughly explores the multifaceted utilization of biosurfactants within the food industry as emulsifiers, antimicrobial, antiadhesive, antibiofilm agents, shelf-life enhancers, texture modifiers, and foaming agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbasi H, Karimi S, Gharibzahedi SMT. Rhamnolipid as a unique emulsifier to stabilize sesame oil-in-water beverage emulsions formed by ultrasound-induced cavitation: optimizing the formulation and physical properties. Journal of Food Processing and Preservation. 44: e14810 (2020)

    CAS  Google Scholar 

  • Abderrahmani A, Tapi A, Nateche F, Chollet M, Leclère V, Wathelet B, Hacene H, Jacques P. Bioinformatics and molecular approaches to detect NRPS genes involved in the biosynthesis of kurstakin from Bacillus thuringiensis. Applied Microbiology and Biotechnology. 92: 571-581 (2011)

    CAS  PubMed  Google Scholar 

  • Adesra A, Srivastava VK, Varjani S. Valorization of dairy wastes: integrative approaches for value added products. Indian Journal of Microbiology. 61: 270-278 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adetunji AI, Olaniran AO. Production and potential biotechnological applications of microbial surfactants: an overview. Saudi Journal of Biological Sciences. 28: 669-679 (2021)

    CAS  PubMed  Google Scholar 

  • Al-Asady AK, Majeed GH,,Al-Waely WA. Study of rhamnolipids cytotoxicity, inhibitory effect on some microorganisms and applying in food products. International Journal of Bio-Technology and Research. 6: 1-8 (2016)

  • Alcantara VA, Pajares IG, Simbahan JF, Rubio MD. Substrate dependent production and isolation of an extracellular biosurfactant from Saccharomyces cerevisiae 2031. Philippine Journal of Science. 141: 13-24 (2012)

    Google Scholar 

  • Alizadeh-Sani M, Hamishehkar H, Khezerlou A, Azizi-Lalabadi M, Azadi Y, Nattagh-Eshtivani E, Fasihi M, Ghavami A, Aynehchi A, Ehsani A. Bioemulsifiers derived from microorganisms: applications in the drug and food industry. Advanced Pharmaceutical Bulletin. 8: 191 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amani H, Kariminezhad H. Study on emulsification of crude oil in water using emulsan biosurfactant for pipeline transportation. Petroleum Science and Technology. 34: 216-222 (2016)

    CAS  Google Scholar 

  • Anal AK, Shrestha S, Sadiq MB. Biopolymeric-based emulsions and their effects during processing, digestibility and bioaccessibility of bioactive compounds in food systems. Food Hydrocolloids. 87: 691-702 (2019)

    CAS  Google Scholar 

  • Anjum F, Gautam G, Edgard G, Negi S. Biosurfactant production through Bacillus sp. MTCC 5877 and its multifarious applications in food industry. Bioresource Technology. 213: 262-269 (2016)

  • Anselmi M, Eliseo T, Zanetti-Polzi L, Fullone MR, Fogliano V, Di Nola A, Paci M, Grgurina I. Structure of the lipodepsipeptide syringomycin E in phospholipids and sodium dodecylsulphate micelle studied by circular dichroism, NMR spectroscopy and molecular dynamics. Biochimica et Biophysica Acta. 1808: 2102-2110 (2011)

  • Araujo LV de, Guimarães CR, Marquita RL da S, Santiago VMJ, de Souza MP, Nitschke M, Freire DMG. Rhamnolipid and surfactin: anti-adhesion/antibiofilm and antimicrobial effects. Food Control. 63: 171-178 (2016)

    Google Scholar 

  • Aretz W, Meiwes J, Seibert G, Vobis G, Wink J. Friulimicins: novel lipopeptide antibiotics with peptidoglycan synthesis inhibiting activity from Actinoplanes friuliensis sp. nov. I. Taxonomic studies of the producing microorganism and fermentation. The Journal of Antibiotics. 53: 807-815 (2000)

  • Bagheri H, Mohebbi A, Amani FS, Naderi M. Application of low molecular weight and high molecular weight biosurfactant in medicine/biomedical/pharmaceutical industries. In: Green Sustainable Process for Chemical and Environmental Engineering and Science. pp. 1-60 (2022)

  • Barale SS, Ghane SG, Sonawane KD. Purification and characterization of antibacterial surfactin isoforms produced by Bacillus velezensis SK. Amb Express. 12: 1-20 (2022)

    Google Scholar 

  • Barkay T, Navon-Venezia S, Ron EZ, Rosenberg E. Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the bioemulsifier alasan. Applied and Environmental Microbiology. 65: 2697-2702 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berry CL, Brassinga AKC, Donald LJ, Fernando WGD, Loewen PC, de Kievit TR. Chemical and biological characterization of sclerosin, an antifungal lipopeptide. Canadian Journal of Microbiology. 58: 1027-1034 (2012)

    CAS  PubMed  Google Scholar 

  • Bhardwaj G, Cameotra SS, Chopra HK. Isolation and purification of a new enamide biosurfactant from Fusarium proliferatum using rice-bran. RSC Advances. 5: 54783-54792 (2015)

    CAS  Google Scholar 

  • Bjerk TR, Severino P, Jain S, Marques C, Silva AM, Pashirova T, Souto EB. Biosurfactants: properties and applications in drug delivery, biotechnology and ecotoxicology. Bioengineering. 8: 115 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bodour AA, Guerrero-Barajas C, Jiorle B V, Malcomson ME, Paull AK, Somogyi A, Trinh LN, Bates RB, Maier RM. Structure and characterization of flavolipids, a novel class of biosurfactants produced by Flavobacterium sp. strain MTN11. Applied and Environmental Microbiology. 70: 114-120 (2004)

  • Cagri-Mehmetoglu A, Kusakli S, van de Venter M. Production of polysaccharide and surfactin by Bacillus subtilis ATCC 6633 using rehydrated whey powder as the fermentation medium. Journal of Dairy Science. 95: 3643-3649 (2012)

    CAS  PubMed  Google Scholar 

  • Calvo H, Mendiara I, Arias E, Blanco D, Venturini ME. The role of iturin A from B. Amyloliquefaciens BUZ-14 in the inhibition of the most common postharvest fruit rots. Food Microbiology. 82: 62-69 (2019)

  • Campos JM, Stamford TLM, Rufino RD, Luna JM, Stamford TCM, Sarubbo LA. Formulation of mayonnaise with the addition of a bioemulsifier isolated from Candida utilis. Toxicology Reports. 2: 1164-1170 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Campos JM, Stamford TLM, Sarubbo LA. Production of a bioemulsifier with potential application in the food industry. Applied Biochemistry and Biotechnology. 172: 3234-3252 (2014)

    CAS  PubMed  Google Scholar 

  • Caporgno MP, Haberkorn I, Böcker L, Mathys A. Cultivation of Chlorella protothecoides under different growth modes and its utilisation in oil/water emulsions. Bioresource Technology. 288: 121476 (2019)

    CAS  PubMed  Google Scholar 

  • Carvalho D, Menezes R, Chitolina GZ, Kunert-Filho HC, Wilsmann DE, Borges KA, Furian TQ, Salle CTP, Moraes HL de S, do Nascimento VP. Antibiofilm activity of the biosurfactant and organic acids against foodborne pathogens at different temperatures, times of contact, and concentrations. Brazilian Journal of Microbiology. 53: 1051-1064 (2022)

  • Chakraborty M, Mahmud NU, Gupta DR, Tareq FS, Shin HJ, Islam T. Inhibitory effects of linear lipopeptides from a marine Bacillus subtilis on the wheat blast fungus Magnaporthe oryzae Triticum. Frontiers in Microbiology. 11: 655(2020)

  • Chaves FS, Brumano LP, Franco Marcelino PR, da Silva SS, Sette LD, Felipe M. Biosurfactant production by Antarctic-derived yeasts in sugarcane straw hemicellulosic hydrolysate. Biomass Conversion and Biorefinery. 13: 1-11 (2021)

  • Cheng Y-H, Zhang N, Han J-C, Chang C-W, Hsiao FS-H, Yu Y-H. Optimization of surfactin production from Bacillus subtilis in fermentation and its effects on Clostridium perfringens-induced necrotic enteritis and growth performance in broilers. Journal of Animal Physiology and Animal Nutrition. 102: 1232-1244 (2018)

  • Chittepu OR. Isolation and characterization of biosurfactant producing bacteria from groundnut oil cake dumping site for the control of foodborne pathogens. Grain & Oil Science and Technology. 2: 15-20 (2019)

    Google Scholar 

  • Ciurko D, Czyżnikowska Ż, Kancelista A, Łaba W, Janek T. Sustainable production of biosurfactant from agro-industrial oil wastes by Bacillus subtilis and its potential application as antioxidant and ACE inhibitor. International Journal of Molecular Sciences. 23: 10824 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Compaoré CS, Nielsen DS, Sawadogo‐Lingani H, Berner TS, Nielsen KF, Adimpong DB, Diawara B, Ouédraogo GA, Jakobsen M, Thorsen L. Bacillus amyloliquefaciens ssp. plantarum strains as potential protective starter cultures for the production of Bikalga, an alkaline fermented food. Journal of Applied Microbiology. 115: 133-146 (2013)

  • Costa SG, Lépine F, Milot S, Déziel E, Nitschke M, Contiero J. Cassava wastewater as a substrate for the simultaneous production of rhamnolipids and polyhydroxyalkanoates by Pseudomonas aeruginosa. Journal of Industrial Microbiology and Biotechnology. 36: 1063-1072 (2009)

    CAS  PubMed  Google Scholar 

  • de Andrade CJ, de Andrade LM, Bution ML, Dolder MAH, Barros FFC, Pastore GM. Optimizing alternative substrate for simultaneous production of surfactin and 2, 3-butanediol by Bacillus subtilis LB5a. Biocatalysis and Agricultural Biotechnology. 6: 209-218 (2016)

    Google Scholar 

  • DeGroff D. The Craft of the Cocktail: Everything You Need to Know to Be a Master Bartender, with 500 Recipes. Clarkson Potter (2010)

  • Deshmukh C, Jagtap CB, Titus S, Kumar P. Isolation and characterization of fatty acid esters and phosphatidylethanolamine surfactants from a consortium of marine bacteria. 41: 398-404 (2012)

  • Dmitrović S, Pajčin I, Vlajkov V, Grahovac M, Jokić A, Grahovac J. Dairy and wine industry effluents as alternative media for the production of Bacillus-based biocontrol agents. Bioengineering. 9: 663 (2022)

    PubMed  PubMed Central  Google Scholar 

  • Durval IJB, Ribeiro BG, Aguiar JS, Rufino RD, Converti A, Sarubbo LA. Application of a biosurfactant produced by Bacillus cereus UCP 1615 from waste frying oil as an emulsifier in a cookie formulation. Fermentation. 7: 189 (2021a)

    CAS  Google Scholar 

  • Durval IJB, da Silva IA, Sarubbo LA. Application of microbial biosurfactants in the food industry. In: Microbial Biosurfactants. 1–10 (2021b)

  • Eeman M, Olofsson G, Sparr E, Nasir MN, Nylander T, Deleu M. Interaction of fengycin with stratum corneum mimicking model membranes: a calorimetry study. Colloids and Surfaces B. 121: 27-35 (2014)

    CAS  PubMed  Google Scholar 

  • Firdose A, Msarah MJ, Chong NHH, Aqma WS. Extraction and antimicrobial activity of rhamnolipid biosurfactant produced by Pseudomonas aeruginosa UKMP14T. Malaysian Journal of Microbiology. 17: (2021)

  • Fookao AN, Mbawala A, Nganou ND, Nguimbou RM, Mouafo HT. Improvement of the texture and dough stability of milk bread using bioemulsifiers/biosurfactants produced by lactobacilli isolated from an indigenous fermented milk (pendidam). LWT. 163: 113609 (2022)

    CAS  Google Scholar 

  • Franzetti A, Gandolfi I, Bestetti G, Smyth TJP, Banat IM. Production and applications of trehalose lipid biosurfactants. European Journal of Lipid Science and Technology. 112: 617-627 (2010)

    CAS  Google Scholar 

  • From C, Hormazabal V, Granum PE. Food poisoning associated with pumilacidin-producing Bacillus pumilus in rice. International Journal of Food Microbiology. 115: 319-324 (2007)

    CAS  PubMed  Google Scholar 

  • Gargouri B, Contreras M del M, Ammar S, Segura-Carretero A, Bouaziz M. Biosurfactant production by the crude oil degrading Stenotrophomonas sp. B-2: chemical characterization, biological activities and environmental applications. Environmental Science and Pollution Research. 24: 3769-3779 (2017)

  • Gaur VK, Regar RK, Dhiman N, Gautam K, Srivastava JK, Patnaik S, Kamthan M, Manickam N. Biosynthesis and characterization of sophorolipid biosurfactant by Candida spp.: application as food emulsifier and antibacterial agent. Bioresource Technology. 285: 121314 (2019)

  • George S, Jayachandran K. Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D. Journal of Applied Microbiology. 114: 373-383 (2013)

    CAS  PubMed  Google Scholar 

  • De Giani A, Zampolli J, Di Gennaro P. Recent trends on biosurfactants with antimicrobial activity produced by bacteria associated with human health: different perspectives on their properties, challenges, and potential applications. Frontiers in Microbiology. 12: 655150 (2021)

    PubMed  PubMed Central  Google Scholar 

  • Giri SS, Ryu EC, Sukumaran V, Park SC. Antioxidant, antibacterial, and anti-adhesive activities of biosurfactants isolated from Bacillus strains. Microbial Pathogenesis. 132: 66-72 (2019a)

    CAS  PubMed  Google Scholar 

  • Gomaa EZ. Antimicrobial activity of a biosurfactant produced by Bacillus licheniformis strain M104 grown on whey. Brazilian Archives of Biology and Technology. 56: 259-268 (2013)

    CAS  Google Scholar 

  • Gu Y, Zheng R, Sun C, Wu S. Isolation, identification and characterization of two kinds of deep-sea bacterial lipopeptides against foodborne pathogens. Frontiers in Microbiology. 13: (2022)

  • Haba E, Bouhdid S, Torrego-Solana N, Marqués AM, Espuny MJ, García-Celma MJ, Manresa A. Rhamnolipids as emulsifying agents for essential oil formulations: antimicrobial effect against Candida albicans and methicillin-resistant Staphylococcus aureus. International Journal of Pharmaceutics. 476: 134-141 (2014)

    CAS  PubMed  Google Scholar 

  • He H, Shen B, Korshalla J, Carter GT. Circulocins, new antibacterial lipopeptides from Bacillus circulans, J2154. Tetrahedron. 57: 1189-1195 (2001)

    CAS  Google Scholar 

  • He Z, Zeng W, Zhu X, Zhao H, Lu Y, Lu Z. Influence of surfactin on physical and oxidative stability of microemulsions with docosahexaenoic acid. Colloids and Surfaces B: Biointerfaces. 151: 232-239 (2017)

    CAS  PubMed  Google Scholar 

  • Hipólito A, Caretta T de O, Silveira VAI, Bersaneti GT, Mali S, Celligoi MAPC. Active biodegradable cassava starch films containing sophorolipids produced by Starmerella bombicola ATCC® 22214TM. Journal of Polymers and the Environment. 29: 3199-3209 (2021)

  • Hipólito A, da Silva RAA, de Oliveira Caretta T, Silveira VAI, Amador IR, Panagio LA, Borsato D, Celligoi MAPC. Evaluation of the antifungal activity of sophorolipids from Starmerella bombicola against food spoilage fungi. Biocatalysis and Agricultural Biotechnology. 29: 101797 (2020)

    Google Scholar 

  • Hirata Y, Igarashi K, Ueda A, Quan GL. Enhanced sophorolipid production and effective conversion of waste frying oil using dual lipophilic substrates. Bioscience, Biotechnology, and Biochemistry. 85: 1763-1771 (2021)

    PubMed  Google Scholar 

  • Hoffmann M, Mück D, Grossmann L, Greiner L, Klausmann P, Henkel M, Lilge L, Weiss J, Hausmann R. Surfactin from Bacillus subtilis displays promising characteristics as O/W-emulsifier for food formulations. Colloids and Surfaces B: Biointerfaces. 203: 111749 (2021)

    CAS  PubMed  Google Scholar 

  • Hu J, Luo J, Zhu Z, Chen B, Ye X, Zhu P, Zhang B. Multi-scale biosurfactant production by Bacillus subtilis using tuna fish waste as substrate. Catalysts. 11: 456 (2021)

    CAS  Google Scholar 

  • Hua B, Feng H, Han J, Qiao Z, Wang X, Zhang Q, Liu Z, Wu Z. Isolation and characterization of a new fusaricidin-type antibiotic produced by Paenibacillus bovis sp. nov BD3526. Current Microbiology. 77: 3990-3999 (2020)

  • Huang K, Zhang B, Shen Z-Y, Cai X, Liu Z-Q, Zheng Y-G. Enhanced amphotericin B production by genetically engineered Streptomyces nodosus. Microbiological Research. 242: 126623 (2021)

    CAS  PubMed  Google Scholar 

  • Janek T, Krasowska A, Czyżnikowska Ż, Łukaszewicz M. Trehalose lipid biosurfactant reduces adhesion of microbial pathogens to polystyrene and silicone surfaces: an experimental and computational approach. Frontiers in Microbiology. 9: 2441 (2018)

    PubMed  PubMed Central  Google Scholar 

  • Janek T, Łukaszewicz M, Krasowska A. Antiadhesive activity of the biosurfactant pseudofactin II secreted by the Arctic bacterium Pseudomonas fluorescens BD5. BMC Microbiology. 12: 1-9 (2012)

    Google Scholar 

  • Janek T, Łukaszewicz M, Rezanka T, Krasowska A. Isolation and characterization of two new lipopeptide biosurfactants produced by Pseudomonas fluorescens BD5 isolated from water from the Arctic Archipelago of Svalbard. Bioresource Technology. 101: 6118-6123 (2010)

    CAS  PubMed  Google Scholar 

  • Jayakumar A, Radoor S, Nair IC, Siengchin S, Parameswaranpillai J, Radhakrishnan EK. Polyvinyl alcohol-nanocomposite films incorporated with clay nanoparticles and lipopeptides as active food wraps against food spoilage microbes. Food Packaging and Shelf Life. 30: 100727 (2021)

    CAS  Google Scholar 

  • Jemil N, Ouerfelli M, Almajano MP, Elloumi-Mseddi J, Nasri M, Hmidet N. The conservative effects of lipopeptides from Bacillus methylotrophicus DCS1 on sunflower oil-in-water emulsion and raw beef patties quality. Food Chemistry. 303: 125364 (2020)

    CAS  PubMed  Google Scholar 

  • Jia Z, Gwynne L, Sedgwick AC, Müller M, Williams GT, Jenkins ATA, James TD, Schönherr H. Enhanced colorimetric differentiation between Staphylococcus aureus and Pseudomonas aeruginosa using a shape-encoded sensor hydrogel. ACS Applied Bio Materials. 3: 4398-4407 (2020)

    CAS  PubMed  Google Scholar 

  • Jiang J, Gao L, Bie X, Lu Z, Liu H, Zhang C, Lu F, Zhao H. Identification of novel surfactin derivatives from NRPS modification of Bacillus subtilis and its antifungal activity against Fusarium moniliforme. BMC Microbiology. 16: 31 (2016a)

    PubMed  PubMed Central  Google Scholar 

  • Joe MM, Bradeeba K, Parthasarathi R, Sivakumaar PK, Chauhan PS, Tipayno S, Benson A, Sa T. Development of surfactin based nanoemulsion formulation from selected cooking oils: evaluation for antimicrobial activity against selected food associated microorganisms. Journal of the Taiwan Institute of Chemical Engineers. 43: 172-180 (2012)

    CAS  Google Scholar 

  • Johnson P, Trybala A, Starov V, Pinfield VJ. Effect of synthetic surfactants on the environment and the potential for substitution by biosurfactants. Advances in Colloid and Interface Science. 288: 102340 (2021)

    CAS  PubMed  Google Scholar 

  • Kawase T, Sumida S, Oida T. Hybrid biosurfactant: Syntheses of hybrid corynomycolic acid and its monolayer formation. Tenside, Surfactants, Detergents. 52: 219-229 (2015)

    CAS  Google Scholar 

  • Kaya K, Mahakhant A, Keovara L, Sano T, Kubo T, Takagi H. Spiroidesin, a novel lipopeptide from the Cyanobacterium Anabaena spiroides that inhibits cell growth of the cyanobacterium microcystis aeruginosa. Journal of Natural Products. 65: 920-921 (2002)

    CAS  PubMed  Google Scholar 

  • Kiran GS, Priyadharsini S, Sajayan A, Priyadharsini GB, Poulose N, Selvin J. Production of lipopeptide biosurfactant by a marine Nesterenkonia sp. and its application in food industry. Frontiers in Microbiology. 8: 1138 (2017)

  • Kim JY, Moon EC, Kim J-Y, Kim HJ, Heo K, Shim J-J, Lee J-L. Lactobacillus helveticus HY7801 ameliorates bacterial vaginosis by inhibiting biofilm formation and epithelial cell adhesion of Gardnerella vaginalis. Food Science and Biotechnology. 32: 507-515 (2023)

    CAS  PubMed  Google Scholar 

  • Kourmentza K, Gromada X, Michael N, Degraeve C, Vanier G, Ravallec R, Coutte F, Karatzas KA, Jauregi P. Antimicrobial activity of lipopeptide biosurfactants against foodborne pathogen and food spoilage microorganisms and their cytotoxicity. Frontiers in Microbiology. 11: 561060 (2021)

    PubMed  PubMed Central  Google Scholar 

  • Kumar A, Chandra R. Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon. 6: 2 (2020)

  • Lara VM, Vallejo M, Parada R, Henao Ossa JS, Gliemmo MF, Campos CA. Characterization of the emulsifying activity of biosurfactants produced by lactic acid bacteria isolated from the Argentinian Patagonia. Journal of Dispersion Science and Technology. 43: 902-909 (2022)

    CAS  Google Scholar 

  • Lee M-H, Lee J, Nam Y-D, Lee JS, Seo M-J, Yi S-H. Characterization of antimicrobial lipopeptides produced by Bacillus sp. LM7 isolated from chungkookjang, a Korean traditional fermented soybean food. International Journal of Food Microbiology. 221: 12-18 (2016a)

  • Lee JY, Shim JM, Yao Z, Liu X, Lee KW, Kim H-J, Ham K-S, Kim JH. Antimicrobial activity of Bacillus amyloliquefaciens EMD17 isolated from Cheonggukjang and potential use as a starter for fermented soy foods. Food Science and Biotechnology. 25: 525-532 (2016b)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leong D, NicAogáin K, Luque-Sastre L, McManamon O, Hunt K, Alvarez-Ordóñez A, Scollard J, Schmalenberger A, Fanning S, O’Byrne C, Jordan K. A 3-year multi-food study of the presence and persistence of Listeria monocytogenes in 54 small food businesses in Ireland. International Journal of Food Microbiology. 249: 18-26 (2017)

    PubMed  Google Scholar 

  • Li R, Du W, Yang J, Liu Z, Yousef AE. Control of Listeria monocytogenes biofilm by paenibacterin, a natural antimicrobial lipopeptide. Food Control. 84: 529-535 (2018)

    CAS  Google Scholar 

  • Li W, Rokni-Zadeh H, De Vleeschouwer M, Ghequire MGK, Sinnaeve D, Xie G-L, Rozenski J, Madder A, Martins JC, De Mot R. The antimicrobial compound xantholysin defines a new group of Pseudomonas cyclic lipopeptides. PLoS ONE. 8: (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li F-Z, Zeng Y-J, Zong M-H, Yang J-G, Lou W-Y. Bioprospecting of a novel endophytic Bacillus velezensis FZ06 from leaves of Camellia assamica: production of three groups of lipopeptides and the inhibition against food spoilage microorganisms. Journal of Biotechnology. 323: 42-53 (2020)

    CAS  PubMed  Google Scholar 

  • Lin F, Huang Z, Chen Y, Zhou L, Chen M, Sun J, Lu Z, Lu Y. Effect of combined Bacillomycin D and chitosan on growth of Rhizopus stolonifer and Botrytis cinerea and cherry tomato preservation. Journal of the Science of Food and Agriculture. 101: 229-239 (2021)

    CAS  PubMed  Google Scholar 

  • Lin L-Z, Zheng Q-W, Wei T, Zhang Z-Q, Zhao C-F, Zhong H, Xu Q-Y, Lin J-F, Guo L-Q. Isolation and characterization of fengycins produced by Bacillus amyloliquefaciens JFL21 and its broad-spectrum antimicrobial potential against multidrug-resistant foodborne pathogens. Frontiers in Microbiology. 11: 579–621 (2020)

    PubMed  PubMed Central  Google Scholar 

  • Linlin Z, Chaomin S. Fengycins, Cyclic lipopeptides from marine Bacillus subtilis strains, kill the plant-pathogenic fungus Magnaporthe grisea by inducing reactive oxygen species production and chromatin condensation. Applied and Environmental Microbiology. 84: 445–518 (2018)

    Google Scholar 

  • Liu S, Gu S, Shi Y, Chen Q. Alleviative effects of mannosylerythritol lipid-A on the deterioration of internal structure and quality in frozen dough and corresponding steamed bread. Food Chemistry. 431: 137122 (2024)

    CAS  PubMed  Google Scholar 

  • Liu Y, Ning Y, Chen Z, Han P, Zhi T, Li S, Ma A, Jia Y. Transcriptomics reveals substance biosynthesis and transport on membranes of Listeria monocytogenes affected by antimicrobial lipopeptide brevilaterin B. Food Science and Human Wellness. 12: 1359-1368 (2023)

    Google Scholar 

  • Liu X, Shu Q, Chen Q, Pang X, Wu Y, Zhou W, Wu Y, Niu J, Zhang X. Antibacterial efficacy and mechanism of mannosylerythritol lipids-A on Listeria monocytogenes. Molecules. 25: 4857 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Zhang L, Pang X, Wu Y, Wu Y, Shu Q, Chen Q, Zhang X. Synergistic antibacterial effect and mechanism of high hydrostatic pressure and mannosylerythritol Lipid-A on Listeria monocytogenes. Food Control. 135: 108797 (2022)

    CAS  Google Scholar 

  • Liu J, Zhu N, Yang J, Yang Y, Wang R, Liu L, Yuan H. Lipopeptide produced from Bacillus sp. W112 improves the hydrolysis of lignocellulose by specifically reducing non-productive binding of cellulases with and without CBMs. Biotechnology for Biofuels. 10: 1-12 (2017)

  • Luna JM, Rufino RD, Sarubbo LA, Rodrigues LRM, Teixeira JAC, de Campos-Takaki GM. Evaluation antimicrobial and antiadhesive properties of the biosurfactant Lunasan produced by Candida sphaerica UCP 0995. Current Microbiology. 62: 1527-1534 (2011)

    CAS  PubMed  Google Scholar 

  • Luo Z, Yuan X, Zhong H, Zeng G, Liu Z, Ma X, Zhu Y. Optimizing rhamnolipid production by Pseudomonas aeruginosa ATCC 9027 grown on waste frying oil using response surface method and batch-fed fermentation. Journal of Central South University. 20: 1015-1021 (2013)

    CAS  Google Scholar 

  • Magalhães L, Nitschke M. Antimicrobial activity of rhamnolipids against Listeria monocytogenes and their synergistic interaction with nisin. Food Control. 29: 138-142 (2013)

    Google Scholar 

  • Malakar C, Patowary K, Deka S, Kalita MC. Synthesis, characterization, and evaluation of antibacterial efficacy of rhamnolipid-coated zinc oxide nanoparticles against Staphylococcus aureus. World Journal of Microbiology and Biotechnology. 37: 1-14 (2021)

    Google Scholar 

  • Marcelino PRF, Peres GFD, Terán-Hilares R, Pagnocca FC, Rosa CA, Lacerda TM, Dos Santos JC, Da Silva SS. Biosurfactants production by yeasts using sugarcane bagasse hemicellulosic hydrolysate as new sustainable alternative for lignocellulosic biorefineries. Industrial Crops and Products. 129: 212-223 (2019)

    CAS  Google Scholar 

  • Mnif I, Besbes S, Ellouze R, Ellouze-Chaabouni S, Ghribi D. Improvement of bread quality and bread shelf-life by Bacillus subtilis biosurfactant addition. Food Science and Biotechnology. 21: 1105-1112 (2012)

    CAS  Google Scholar 

  • Mnif I, Ghribi D. Glycolipid biosurfactants: main properties and potential applications in agriculture and food industry. Journal of the Science of Food and Agriculture. 96: 4310-4320 (2016)

    CAS  PubMed  Google Scholar 

  • Morita T, Ishibashi Y, Fukuoka T, Imura T, Sakai H, Abe M, Kitamoto D. Production of glycolipid biosurfactants, cellobiose lipids, by Cryptococcus humicola JCM 1461 and their interfacial properties. Bioscience, Biotechnology and Biochemistry. 75: 1597-1599 (2011)

    CAS  PubMed  Google Scholar 

  • Mouafo HT, Baomog AMB, Adjele JJB, Sokamte AT, Mbawala A, Ndjouenkeu R. Microbial profile of fresh beef sold in the markets of Ngaoundéré, Cameroon, and antiadhesive activity of a biosurfactant against selected bacterial pathogens. Journal of Food Quality. 2020: 5989428 (2020a)

    Google Scholar 

  • Mouafo HT, Mbawala A, Tanaji K, Somashekar D, Ndjouenkeu R. Improvement of the shelf life of raw ground goat meat by using biosurfactants produced by lactobacilli strains as biopreservatives. LWT. 133: 110071 (2020b)

    CAS  Google Scholar 

  • Murugan G, Rengaswamy P. Isolation, screening and production of biosurfactant by Pseudomonas sp. isolated from mangrove forest soil using coconut oil cake as substrate. Journal of Basic and Applied Biology. 5: 251-257 (2011)

  • Nalini S, Parthasarathi R, Inbakanadan D. Biosurfactant in food and agricultural application. Environmental Biotechnology. 2: 75-94 (2020)

    Google Scholar 

  • Naughton PJ, Marchant R, Naughton V, Banat IM. Microbial biosurfactants: current trends and applications in agricultural and biomedical industries. Journal of Applied Microbiology. 127: 12-28 (2019)

    CAS  PubMed  Google Scholar 

  • Nerin C, Canellas E, Vera P, Garcia-Calvo E, Luque-Garcia JL, Cámara C, Ausejo R, Miguel J, Mendoza N. A common surfactant used in food packaging found to be toxic for reproduction in mammals. Food and Chemical Toxicology. 113: 115-124 (2018)

    CAS  PubMed  Google Scholar 

  • Nitschke M, Silva SS e. Recent food applications of microbial surfactants. Critical Reviews in Food Science and Nutrition. 58: 631-638 (2018)

  • Nitschke M, Araújo L V, Costa SGVAO, Pires RC, Zeraik AE, Fernandes ACLB, Freire DMG, Contiero J. Surfactin reduces the adhesion of food‐borne pathogenic bacteria to solid surfaces. Letters in Applied Microbiology. 49: 241-247 (2009)

  • Nitschke M, Pastore GM. Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater. Bioresource Technology. 97: 336-341 (2006)

    CAS  PubMed  Google Scholar 

  • Ohno O, Ikeda Y, Sawa R, Igarashi M, Kinoshita N, Suzuki Y, Miyake K, Umezawa K. Isolation of heptadepsin, a novel bacterial cyclic depsipeptide that inhibits lipopolysaccharide activity. Chemistry and Biology. 11: 1059-1070 (2004)

    CAS  PubMed  Google Scholar 

  • Oliveira JG de, Garcia-Cruz CH. Properties of a biosurfactant produced by Bacillus pumilus using vinasse and waste frying oil as alternative carbon sources. Brazilian Archives of Biology and Technology. 56: 155-160 (2013)

    Google Scholar 

  • Overney A, Jacques-André-Coquin J, Ng P, Carpentier B, Guillier L, Firmesse O. Impact of environmental factors on the culturability and viability of Listeria monocytogenes under conditions encountered in food processing plants. International Journal of Food Microbiology. 244: 74-81 (2017)

    PubMed  Google Scholar 

  • Pang L, Xia B, Liu X, Yi Y, Jiang L, Chen C, Li P, Zhang M, Deng X, Wang R. Improvement of antifungal activity of a culture filtrate of endophytic Bacillus amyloliquefaciens isolated from kiwifruit and its effect on postharvest quality of kiwifruit. Journal of Food Biochemistry. 45: e13551 (2021)

    CAS  PubMed  Google Scholar 

  • Panjiar N, Mattam AJ, Jose S, Gandham S, Velankar HR. Valorization of xylose-rich hydrolysate from rice straw, an agroresidue, through biosurfactant production by the soil bacterium Serratia nematodiphila. Science of the Total Environment. 729: 138933 (2020)

    CAS  PubMed  Google Scholar 

  • Park H-R, Kim G-H, Na Y, Oh J-E, Cho M-S. Physicochemical and sensory properties of protein-fortified cookies according to the ratio of isolated soy protein to whey protein. Food Science and Biotechnology. 30: 653-661 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Partovi M, Lotfabad TB, Roostaazad R, Bahmaei M, Tayyebi S. Management of soybean oil refinery wastes through recycling them for producing biosurfactant using Pseudomonas aeruginosa MR01. World Journal of Microbiology and Biotechnology. 29: 1039-1047 (2013)

    CAS  PubMed  Google Scholar 

  • Pathania AS, Jana AK. Utilization of waste frying oil for rhamnolipid production by indigenous Pseudomonas aeruginosa: improvement through co-substrate optimization. Journal of Environmental Chemical Engineering. 8: 104304 (2020)

    CAS  Google Scholar 

  • Patil HI, Pratap AP. Production and quantitative analysis of trehalose lipid biosurfactants using high‐performance liquid chromatography. Journal of Surfactants and Detergents. 21: 553-564 (2018)

    CAS  Google Scholar 

  • Patowary R, Patowary K, Kalita MC, Deka S. Utilization of paneer whey waste for cost-effective production of rhamnolipid biosurfactant. Applied Biochemistry and Biotechnology. 180: 383-399 (2016)

    CAS  PubMed  Google Scholar 

  • Patowary R, Patowary K, Kalita MC, Deka S, Lam SS, Sarma H. Green production of noncytotoxic rhamnolipids from jackfruit waste: process and prospects. Biomass Conversion and Biorefinery. 12: 4375-4388 (2022)

    CAS  Google Scholar 

  • Poonguzhali P, Rajan S, Parthasarathi R, Srinivasan R, Kannappan A. Optimization of biosurfactant production by Pseudomonas aeruginosa using rice water and its competence in controlling Fusarium wilt of Abelmoschus esculentus. South African Journal of Botany. 151: 144-157 (2022)

    CAS  Google Scholar 

  • Prathiviraj R, Rajeev R, Fernandes H, Rathna K, Lipton AN, Selvin J, Kiran GS. A gelatinized lipopeptide diet effectively modulates immune response, disease resistance and gut microbiome in Penaeus vannamei challenged with Vibrio parahaemolyticus. Fish and Shellfish Immunology. 112: 92-107 (2021)

    CAS  PubMed  Google Scholar 

  • Punrat T, Thaniyavarn J, Napathorn SC, Anuntagoolb J, Thaniyavarn S. Production of a sophorolipid biosurfactant by Wickerhamomyces anomalus MUE24 and its use for modification of rice flour properties. ScienceAsia. 46: 1 (2020)

  • Qian S, Lu H, Meng P, Zhang C, Lv F, Bie X, Lu Z. Effect of inulin on efficient production and regulatory biosynthesis of bacillomycin D in Bacillus subtilis fmbJ. Bioresource Technology. 179: 260-267 (2015)

    CAS  PubMed  Google Scholar 

  • Qin W-Q, Fei D, Zhou L, Guo Y-J, An S, Gong O-H, Wu Y-Y, Liu J-F, Yang S-Z, Mu B-Z. A new surfactin-C 17 produced by Bacillus subtilis TD7 with a low critical micelle concentration and high biological activity. New Journal of Chemistry. 47: 7604-7612 (2023)

    CAS  Google Scholar 

  • Quinn GA, Maloy AP, Banat MM, Banat IM. A comparison of effects of broad-spectrum antibiotics and biosurfactants on established bacterial biofilms. Current Microbiology. 67: 614-623 (2013)

    CAS  PubMed  Google Scholar 

  • Radha P, Prabhu K, Jayakumar A, AbilashKarthik S, Ramani K. Biochemical and kinetic evaluation of lipase and biosurfactant assisted ex novo synthesis of microbial oil for biodiesel production by Yarrowia lipolytica utilizing chicken tallow. Process Biochemistry. 95: 17-29 (2020a)

    CAS  Google Scholar 

  • Radha P, Suhazsini P, Prabhu K, Jayakumar A, Kandasamy R. Chicken tallow, a renewable source for the production of biosurfactant by Yarrowia lipolytica MTCC9520, and its application in silver nanoparticle synthesis. Journal of Surfactants and Detergents. 23: 119-135 (2020b)

    CAS  Google Scholar 

  • Rahaman SM, Bhattarai A, Kumar D, Singh B, Saha B. Application of biosurfactants as emulsifiers in the processing of food products with diverse utilization in the baked goods. In: Applications of Next Generation Biosurfactants in the Food Sector. 203–237 (2023)

  • Ravindran A, Kiran GS, Selvin J. Revealing the effect of lipopeptide on improving the probiotics characteristics: flavor and texture enhancer in the formulated yogurt. Food Chemistry. 375: 131718 (2022)

    CAS  PubMed  Google Scholar 

  • Ravindran A, Selvin J, Seghal Kiran G. Effective utilization of wheat gluten by lipopeptide biosurfactant in the formulation of cookies. Journal of the Science of Food and Agriculture. 103: 4685-4691 (2023)

    CAS  PubMed  Google Scholar 

  • Rene ER, Ge J, Kumar G, Singh RP, Varjani S. Resource recovery from wastewater, solid waste, and waste gas: engineering and management aspects. Environmental Science and Pollution Research. 27: 17435-17437 (2020)

    PubMed  Google Scholar 

  • Rivardo F, Martinotti MG, Turner RJ, Ceri H. The activity of silver against Escherichia coli biofilm is increased by a lipopeptide biosurfactant. Canadian Journal of Microbiology. 56: 272-278 (2010)

    CAS  PubMed  Google Scholar 

  • Rivera ÁD, Urbina MÁM, López y López VE. Advances on research in the use of agro-industrial waste in biosurfactant production. World Journal of Microbiology and Biotechnology. 35: 155 (2019)

  • Rodríguez-Fernández DE, Rodríguez-León JA, Carvalho JC de, Thomaz-Soccol V, Parada JL, Soccol CR. Recovery of phytase produced by solid-state fermentation on citrus peel. Brazilian Archives of Biology and Technology. 53: 1487-1496 (2010)

    Google Scholar 

  • Rufino RD, Luna JM, Sarubbo LA, Rodrigues LRM, Teixeira JAC, Campos-Takaki GM. Antimicrobial and anti-adhesive potential of a biosurfactant Rufisan produced by Candida lipolytica UCP 0988. Colloids and Surfaces B: Biointerfaces. 84: 1-5 (2011)

    CAS  PubMed  Google Scholar 

  • Rufino RD, Sarubbo LA, Campos-Takaki GM. Enhancement of stability of biosurfactant produced by Candida lipolytica using industrial residue as substrate. World Journal of Microbiology and Biotechnology. 23: 729-734 (2007)

    CAS  Google Scholar 

  • Sabaté DC, Audisio MC. Inhibitory activity of surfactin, produced by different Bacillus subtilis subsp. subtilis strains, against Listeria monocytogenes sensitive and bacteriocin-resistant strains. Microbiological Research. 168: 125-129 (2013)

  • Sadeghi H, Rashedi H, Mazaheri Assadi M, Seyedin Ardebili M. Potential application of bioemulsifier RAG-1 as an anti-staling agent in flat bread quality. Journal of Food Science and Technology. 60: 2619-2627 (2023)

    CAS  PubMed  Google Scholar 

  • Sadh PK, Duhan S, Duhan JS. Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresources and Bioprocessing. 5: 1 (2018)

    Google Scholar 

  • Sałek K, Euston SR. Sustainable microbial biosurfactants and bioemulsifiers for commercial exploitation. Process Biochemistry. 85: 143-155 (2019)

    Google Scholar 

  • Sari SK, Trikurniadewi N, Ibrahim SNMM, Khiftiyah AM, Abidin AZ, Nurhariyati T. Bioconversion of agricultural waste hydrolysate from lignocellulolytic mold into biosurfactant by Achromobacter sp. BP (1) 5. Biocatalysis and Agricultural Biotechnology. 24: 101534 (2020)

  • Sato T, Ishiyama D, Honda R, Senda H, Konno H, Tokumasu S, Kanazawa S. Glomosporin, a novel antifungal cyclic depsipeptide from Glomospora sp. I. Production, isolation, physico-chemical properties and biological activities. The Journal of Antibiotics. 53: 597-602 (2000)

  • Schick J, Etschel P, Bailo R, Ott L, Bhatt A, Lepenies B, Kirschning C, Burkovski A, Lang R. Toll-like receptor 2 and Mincle cooperatively sense corynebacterial cell wall glycolipids. Infection and Immunity. 85: 10-1128 (2017)

  • Selvam K, Senthilkumar B, Selvankumar T. Optimization of low‐cost biosurfactant produced by Bacillus subtilis SASCBT01 and their environmental remediation potential. Letters in Applied Microbiology. 72: 74-81 (2021)

  • Sharma D, Ansari MJ, Gupta S, Al Ghamdi A, Pruthi P, Pruthi V. Structural characterization and antimicrobial activity of a biosurfactant obtained from Bacillus pumilus DSVP18 grown on potato peels. Jundishapur Journal of Microbiology. 8(9): e21257 (2015)

  • Sharma S, Datta P, Kumar B, Tiwari P, Pandey LM. Production of novel rhamnolipids via biodegradation of waste cooking oil using Pseudomonas aeruginosa MTCC7815. Biodegradation. 30: 301-312 (2019)

    CAS  PubMed  Google Scholar 

  • Sharma V, Garg M, Devismita T, Thakur P, Henkel M, Kumar G. Preservation of microbial spoilage of food by biosurfactantbased coating. Asian Journal of Pharmaceutical and Clinical Research. 11: 98 (2018)

  • Sharma R. Surfactants: basics and versatility in food industries. PharmaTutor. 2: 17-29 (2014a)

    Google Scholar 

  • Sharma D, Singh Saharan B. Simultaneous production of biosurfactants and bacteriocins by probiotic Lactobacillus casei MRTL3. International Journal of Microbiology. (2014b)

  • Sharma D, Vashist H. Hydrodistillation and comparative report of percentage yield on leaves and fruit peels from different citrus plants of Rutaceae family. Journal of Plant Sciences. 10: 75-78 (2015)

    CAS  Google Scholar 

  • Shi J, Zhu X, Lu Y, Zhao H, Lu F, Lu Z. Improving iturin A production of Bacillus amyloliquefaciens by genome shuffling and its inhibition against Saccharomyces cerevisiae in orange juice. Frontiers in Microbiology. 9: 2683 (2018)

    PubMed  PubMed Central  Google Scholar 

  • Shishido TK, Jokela J, Kolehmainen C-T, Fewer DP, Wahlsten M, Wang H, Rouhiainen L, Rizzi E, De Bellis G, Permi P. Antifungal activity improved by coproduction of cyclodextrins and anabaenolysins in Cyanobacteria. Proceedings of the National Academy of Sciences. 112: 13669-13674 (2015)

    CAS  Google Scholar 

  • Shoeb E, Akhlaq F, Badar U, Akhter J, Imtiaz S. Classification and industrial applications of biosurfactants. Academic Research International. 4: 243 (2013)

    Google Scholar 

  • Shu Q, Wei T, Liu X, Liu S, Chen Q. The dough-strengthening and spore-sterilizing effects of mannosylerythritol lipid-A in frozen dough and its application in bread making. Food Chemistry. 369: 131011 (2022)

    CAS  PubMed  Google Scholar 

  • Shu Q, Wei T, Lu H, Niu Y, Chen Q. Mannosylerythritol lipids: dual inhibitory modes against Staphylococcus aureus through membrane-mediated apoptosis and biofilm disruption. Applied Microbiology and Biotechnology. 104: 5053-5064 (2020)

    CAS  PubMed  Google Scholar 

  • Silva IA, Veras BO, Ribeiro BG, Aguiar JS, Guerra JMC, Luna JM, Sarubbo LA. Production of cupcake-like dessert containing microbial biosurfactant as an emulsifier. PeerJ. 8 (2020)

    PubMed  PubMed Central  Google Scholar 

  • Silveira VAI, Marim BM, Hipólito A, Gonçalves MC, Mali S, Kobayashi RKT, Celligoi MAPC. Characterization and antimicrobial properties of bioactive packaging films based on polylactic acid-sophorolipid for the control of foodborne pathogens. Food Packaging and Shelf Life. 26: 100591 (2020)

    Google Scholar 

  • Silveira VAI, Nishio EK, Freitas CAUQ, Amador IR, Kobayashi RKT, Caretta T, Macedo F, Celligoi MAPC. Production and antimicrobial activity of sophorolipid against Clostridium perfringens and Campylobacter jejuni and their additive interaction with lactic acid. Biocatalysis and Agricultural Biotechnology. 21: 101287 (2019)

    Google Scholar 

  • Singh SS, Akhtar MdN, Sharma D, Mandal SM, Korpole S. Characterization of Iturin V, a novel antimicrobial lipopeptide from a potential probiotic strain Lactobacillus sp. M31. Probiotics and Antimicrobial Proteins. 13: 1766-1779 (2021)

  • Singh P, Patil Y, Rale V. Biosurfactant production: emerging trends and promising strategies. Journal of Applied Microbiology. 126: 2-13 (2019)

    CAS  PubMed  Google Scholar 

  • Solaiman DKY, Ashby RD, Zerkowski JA, Krishnama A, Vasanthan N. Control-release of antimicrobial sophorolipid employing different biopolymer matrices. Biocatalysis and Agricultural Biotechnology. 4: 342-348 (2015a)

    Google Scholar 

  • Soleiman Meiguni F, Imanparast S, Salimi F, Nemati F. The probiotic biosurfactant from Levilactobacillus brevis strain F20 isolated from a diary product with potential food applications. Food Biotechnology. 36: 394-411 (2022)

    CAS  Google Scholar 

  • Sriram MI, Kalishwaralal K, Deepak V, Gracerosepat R, Srisakthi K, Gurunathan S. Biofilm inhibition and antimicrobial action of lipopeptide biosurfactant produced by heavy metal tolerant strain Bacillus cereus NK1. Colloids and Surfaces B: Biointerfaces. 85: 174-181 (2011)

    CAS  PubMed  Google Scholar 

  • Teixeira MR, Nogueira R, Nunes LM. Quantitative assessment of the valorisation of used cooking oils in 23 countries. Waste Management. 78: 611-620 (2018)

    PubMed  Google Scholar 

  • Thasana N, Prapagdee B, Rangkadilok N, Sallabhan R, Aye SL, Ruchirawat S, Loprasert S. Bacillus subtilis SSE4 produces subtulene A, a new lipopeptide antibiotic possessing an unusual C15 unsaturated β-amino acid. FEBS Letters. 584: 3209-3214 (2010)

    CAS  PubMed  Google Scholar 

  • Torres MJ, Petroselli G, Daz M, Erra-Balsells R, Audisio MC. Bacillus subtilis subsp. subtilis CBMDC3f with antimicrobial activity against Gram-positive foodborne pathogenic bacteria: UV-MALDI-TOF MS analysis of its bioactive compounds. World Journal of Microbiology and Biotechnology. 31: 929-940 (2015)

    Google Scholar 

  • Usmani Z, Sharma M, Gaffey J, Sharma M, Dewhurst RJ, Moreau B, Newbold J, Clark W, Thakur VK, Gupta VK. Valorization of dairy waste and by-products through microbial bioprocesses. Bioresource Technology. 346: 126444 (2022)

    CAS  PubMed  Google Scholar 

  • Vahidinasab M, Lilge L, Reinfurt A, Pfannstiel J, Henkel M, Morabbi Heravi K, Hausmann R. Construction and description of a constitutive plipastatin mono-producing Bacillus subtilis. Microbial Cell Factories. 19: 1-12 (2020)

    Google Scholar 

  • Valenzuela‐Ávila L, Miliar Y, Moya‐Ramírez I, Chyhyrynets O, García‐Román M, Altmajer‐Vaz D. Effect of emulsification and hydrolysis pretreatments of waste frying oil on surfactin production. Journal of Chemical Technology & Biotechnology. 95: 223-231 (2020)

    Google Scholar 

  • Vallet-Gely I, Novikov A, Augusto L, Liehl P, Bolbach G, Péchy-Tarr M, Cosson P, Keel C, Caroff M, Lemaitre B. Association of hemolytic activity of Pseudomonas entomophila, a versatile soil bacterium, with cyclic lipopeptide production. Applied and Environmental Microbiology. 76: 910-921 (2010)

    CAS  PubMed  Google Scholar 

  • Varadharajan S, Subramaniyan V. Production of biosurfactant by Pseudomonas aeruginosa PB3A using agroindustrial wastes as a carbon source. Malaysian Journal of Microbiology. 10: 57-62 (2014)

    Google Scholar 

  • Varjani S, Lee D-J, Zhang Q. Valorizing agricultural biomass for sustainable development: biological engineering aspects. Bioengineered. 11: 522-523 (2020)

    PubMed  PubMed Central  Google Scholar 

  • Venkataraman S, Rajendran DS, Kumar PS, Vo D-VN, Vaidyanathan VK. Extraction, purification and applications of biosurfactants based on microbial-derived glycolipids and lipopeptides: a review. Environmental Chemistry Letters. 1-22. (2022)

  • Verónica CM, Julia TM, M. SA, Carina AM, Alejandra BM. Antibacterial activity of Bacillus lipopeptides vehiculized and delivered by biopolymeric films. Food and Bioprocess Technology. (2023)

  • Vijayakumar S, Saravanan V. Biosurfactants-types, sources and applications. Research Journal of Microbiology. 10: 181-192 (2015)

    Google Scholar 

  • Villegas-Escobar V, Ceballos I, Mira JJ, Argel LE, Orduz Peralta S, Romero-Tabarez M. Fengycin C produced by Bacillus subtilis EA-CB0015. Journal of Natural Products. 76: 503-509 (2013)

    CAS  PubMed  Google Scholar 

  • Wang Y, Liang J, Zhang C, Wang L, Gao W, Jiang J. Bacillus megaterium WL-3 Lipopeptides Collaborate Against Phytophthora infestans to Control Potato Late Blight and Promote Potato Plant Growth. Frontiers in Microbiology. 11: (2020)

  • Wang C, Zhao L, Xia S, Zhang T, Cao R, Liang G, Li Y, Meng G, Wang W, Shi W. De novo design of α-helical lipopeptides targeting viral fusion proteins: a promising strategy for relatively broad-spectrum antiviral drug discovery. Journal of Medicinal Chemistry. 61: 8734-8745 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu W-J, whey S-M, Ahn B-Y. Isolation and characterization of an antimicrobial substance from Bacillus subtilis BY08 antagonistic to Bacillus cereus and Listeria monocytogenes. Food Science and Biotechnology. 22: 433-440 (2013)

  • Wu Y, Zhou L, Lu F, Bie X, Zhao H, Zhang C, Lu Z, Lu Y. Discovery of a Novel Antimicrobial Lipopeptide, Brevibacillin V, from Brevibacillus laterosporus fmb70 and its application on the preservation of skim milk. Journal of Agricultural and Food Chemistry. 67: 12452-12460 (2019)

    CAS  PubMed  Google Scholar 

  • Xiong ZR, Cobo M, Whittal RM, Snyder AB, Worobo RW. Purification and characterization of antifungal lipopeptide produced by Bacillus velezensis isolated from raw honey. PLoS ONE. 17:4 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, En H, Chunhua Y, Liwen Z, E YA. Isolation and structural elucidation of Brevibacillin, an antimicrobial lipopeptide from Brevibacillus laterosporus that combats drug-resistant gram-positive bacteria. Applied and Environmental Microbiology. 82: 2763-2772 (2016)

  • Xu L, Zhang B, Qin Y, Li F, Yang S, Lu P, Wang L, Fan J. Preparation and characterization of antifungal coating films composed of sodium alginate and cyclolipopeptides produced by Bacillus subtilis. Journal of Agricultural and Food Chemistry. 143: 602-609 (2020)

    CAS  PubMed  Google Scholar 

  • Yuan P-H, Zhou R-C, Chen X, Luo S, Wang F, Mao X-M, Li Y-Q. DepR1, a TetR family transcriptional regulator, positively regulates daptomycin production in an industrial producer, Streptomyces roseosporus SW0702. Applied and Environmental Microbiology. 82: 1898-1905 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zainith S, Chowdhary P, Mani S, Mishra S. Microbial ligninolytic enzymes and their role in bioremediation. In: Microorganisms for Sustainable Environment and Health. 179–203 (2020)

  • Zezzi do Valle Gomes M, Nitschke M. Evaluation of rhamnolipid and surfactin to reduce the adhesion and remove biofilms of individual and mixed cultures of food pathogenic bacteria. Food Control. 25: 441-447 (2012)

  • Zhang X, Ashby R, Solaiman DKY, Uknalis J, Fan X. Inactivation of Salmonella spp. and Listeria spp. by palmitic, stearic, and oleic acid sophorolipids and thiamine dilauryl sulfate. Frontiers in Microbiology. 7: 2076 (2016)

  • Zhang D, Beck BH, Lange M, Zhao H, Thongda W, Ye Z, Li C, Peatman E. Impact of oral and waterborne administration of rhamnolipids on the susceptibility of channel catfish (Ictalurus punctatus) to Flavobacterium columnare infection. Fish & Shellfish Immunology. 60: 44-49 (2017a)

    CAS  Google Scholar 

  • Zhang J, Bilal M, Liu S, Zhang J, Lu H, Luo H, Luo C, Shi H, Iqbal HMN, Zhao Y. Isolation, identification and antimicrobial evaluation of bactericides secreting Bacillus subtilis natto as a biocontrol agent. Processes. 8: 259 (2020)

    CAS  Google Scholar 

  • Zhang N, Pu Y, Sun L, Wang Y, Deng Q, Xu D, Liu Y, Hussain M, Gooneratne R. Modeling the effects of different conditions on the inhibitory activity of antimicrobial lipopeptide (AMPNT-6) against Staphylococcus aureus growth and enterotoxin production in shrimp meat. Aquaculture International. 25: 57-70 (2017b)

    CAS  Google Scholar 

  • Zhang K, Tao W, Lin J, Wang W, Li S. Production of the biosurfactant serrawettin W1 by Serratia marcescens S-1 improves hydrocarbon degradation. Bioprocess and Biosystems Engineering. 44: 2541-2552 (2021)

    CAS  PubMed  Google Scholar 

  • Zhang R, Wu Q, Xu Y, Qian MC. Isolation, identification, and quantification of lichenysin, a novel nonvolatile compound in Chinese distilled spirits. Journal of Food Science. 79: C1907-C1915 (2014)

    CAS  PubMed  Google Scholar 

  • Zhao X, Wang K, Ai C, Yan L, Jiang C, Shi J. Improvement of antifungal and antibacterial activities of food packages using silver nanoparticles synthesized by iturin A. Food Packag. Shelf Life. 28: 100669 (2021)

    CAS  Google Scholar 

  • Zhou L, Song C, Muñoz CY, Kuipers OP. Bacillus cabrialesii BH5 protects tomato plants against botrytis cinerea by production of specific antifungal compounds. Frontiers in Microbiology. 12: 707609 (2021)

  • Zhu J, Huang T, Chen X, Tian D, Wang L, Gao R. Preparation and characterization of vanillin-conjugated chitosan-stabilized emulsions via a Schiff-base reaction. Food Science and Biotechnology. 32: 1-11 (2023)

  • Zhu Z, Zhang B, Cai Q, Ling J, Lee K, Chen B. Fish waste based lipopeptide production and the potential spplication as a bio-dispersant for oil spill control. Frontiers in Bioengineering and Biotechnology. 8: 734 (2020)

  • Zouari R, Besbes S, Ellouze-Chaabouni S, Ghribi-Aydi D. Cookies from composite wheat–sesame peels flours: dough quality and effect of Bacillus subtilis SPB1 biosurfactant addition. Food Chemistry. 194: 758-769 (2016)

    CAS  PubMed  Google Scholar 

  • Zúñiga RN, Aguilera JM. Aerated food gels: fabrication and potential applications. Trends in Food Science & Technology. 19: 176-187 (2008)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support from the fundamental research funds for SRMIST, Chennai, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinoth Kumar Vaidyanathan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkataraman, S., Rajendran, D.S. & Vaidyanathan, V.K. An insight into the utilization of microbial biosurfactants pertaining to their industrial applications in the food sector. Food Sci Biotechnol 33, 245–273 (2024). https://doi.org/10.1007/s10068-023-01435-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-023-01435-6

Keywords

Navigation