Skip to main content
Log in

An overview of various methods for in vitro biofilm formation: a review

  • Invited Review
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Biofilms are widely present in the natural environment and are difficult to remove as they are a survival strategy of microorganisms. Thus, the importance of studying biofilms is being increasingly recognized in food, medical, dental, and water quality-related industries. While research on biofilm detection methods is actively progressing, research on biofilm formation is not progressing rapidly. Moreover, there are few standardized methods because biofilm formation is affected by various factors. However, comprehensive knowledge of biofilm formation is essential to select a suitable method for research purposes. To better understand the various in vitro biofilm formation methods, the principles and characteristics of each method are explained in this review by dividing the methods into static and dynamic systems. In addition, the applications of biofilm research based on various assays are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Al-kafaween MA, Mohd Hilmi AB, Jaffar N, Al-Jamal HAN, Zahri MK. Determination of optimum incubation time for formation of Pseudomonas aeruginosa and Streptococcus pyogenes biofilms in microtiter plate. Bull. Natl. Res. Cent. 43:1-5 (2019)

    Article  Google Scholar 

  • American Society for Testing and Materials (ASTM) E2196-23. Standard Test Method for Quantification of Pseudomonas aeruginosa Biofilm Grown with Medium Shear and Continuous Flow Using Rotating Disk Reactor. ASTM International: West Conshohocken, PA, USA (2023)

    Google Scholar 

  • American Society for Testing and Materials (ASTM) E2647-20. Standard Test Method for Quantification of Pseudomonas aeruginosa Biofilm Grown Using Drip Flow Biofilm Reactor with Low Shear and Continuous Flow. ASTM International: West Conshohocken, PA, USA (2020)

    Google Scholar 

  • Ammons MCB, Ward LS, James GA. Anti‐biofilm efficacy of a lactoferrin/xylitol wound hydrogel used in combination with silver wound dressings. Int. Wound J. 8: 268-273 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  • Azeredo J, Azevedo NF, Briandet R, Cerca N, Coenye T, Costa AR, Desvaux M, Bonaventura GD, Hébraud M, Jaglic Z, Kačániová M, Knøchel S, Lourenço A, Mergulhão F, Meyer RL, Nychas G, Simões M, Tresse O, Sternberg C. Critical review on biofilm methods. Crit. Rev. Microbiol. 43(3): 313-351 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Badel S, Laroche C, Gardarin C, Bernardi T, Michaud P. New method showing the influence of matrix components in Leuconostoc mesenteroides biofilm formation. Appl. Biochem. Biotechnol. 151: 364-370 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Badel S, Laroche C, Gardarin C, Petit E, Bernardi T, Michaud P. A new method to screen polysaccharide cleavage enzymes. Enzyme Microb. Technol. 48(3): 248-252 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Beaudoin T, Zhang L, Hinz AJ, Parr CJ, Mah TF. The biofilm-specific antibiotic resistance gene ndvB is important for expression of ethanol oxidation genes in Pseudomonas aeruginosa biofilms. J. Bacteriol. 194(12): 3128-3136 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanc V, Isabal S, Sanchez MC, Llama‐Palacios A, Herrera D, Sanz M, León R. Characterization and application of a flow system for in vitro multispecies oral biofilm formation. J. Periodontal Res. 49(3): 323-332 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Blanco-Cabra N, López-Martínez MJ, Arévalo-Jaimes BV, Martin-Gómez MT, Samitier J, Torrents E. A new BiofilmChip device for testing biofilm formation and antibiotic susceptibility. NPJ Biofilms Microbiomes. 7: 62 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bueno J. Anti-biofilm drug susceptibility testing methods: looking for new strategies against resistance mechanism. J. Microb. Biochem. Technol. S3: 004 (2014)

    Google Scholar 

  • Carrascosa C, Raheem D, Ramos F, Saraiva A, Raposo A. Microbial biofilms in the food industry—a comprehensive review. Int. J. Environ. Res. Public Health. 18(4): 2014 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrazco-Palafox J, Rivera-Chavira BE, Adame-Gallegos JR, Rodríguez-Valdez LM, Orrantia-Borunda E, Nevárez-Moorillón GV. Rhamnolipids from Pseudomonas aeruginosa Rn19a modifies the biofilm formation over a borosilicate surface by clinical isolates. Coatings. 11(2): 136 (2021)

    Article  CAS  Google Scholar 

  • Cattò C, Cappitelli F. Testing anti-biofilm polymeric surfaces: where to start?. Int. J. Mol. Sci. 20: 3794 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  • Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A. The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J. Clin. Microbiol. 37(6): 1771-1776 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chavant P, Gaillard-Martinie B, Talon R, Hébraud M, Bernardi T. A new device for rapid evaluation of biofilm formation potential by bacteria. J. Microbiol. Methods. 68(3): 605-612 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Chen P, Lang J, Franklin T, Yu Z, Yang R. Reduced biofilm formation at the air–liquid–solid interface via introduction of surfactants. ACS Biomater. Sci. Eng. https://doi.org/10.1021/acsbiomaterials.0c01691 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  • Christensen GD, Simpson WA, Younger JJ, Baddour LM, Barrett FF, Melton DM, Beachey EH. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J. Clin. Microbiol. 22(6): 996-1006 (1985)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coenye T, Nelis HJ. In vitro and in vivo model systems to study microbial biofilm formation. J. Microbiol. Methods. 83(2): 89-105 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Cotter JJ, O’Gara JP, Stewart PS, Pitts B, Casey E. Characterization of a modified rotating disk reactor for the cultivation of Staphylococcus epidermidis biofilm. J. Appl. Microbiol. 109(6): 2105-2117 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Cotter, JJ, O'Gara JP, Mack D, Casey E. Oxygen-mediated regulation of biofilm development is controlled by the alternative sigma factor σB in Staphylococcus epidermidis. Appl. Environ. Microbiol. 75(1): 261-264 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Crémet L, Corvec S, Batard E, Auger M, Lopez I, Pagniez F, Dauvergne S, Caroff N. Comparison of three methods to study biofilm formation by clinical strains of Escherichia coli. Diagn. Microbiol. Infect. Dis. 75(3): 252-255 (2013)

    Article  PubMed  Google Scholar 

  • Crivello G, Fracchia L, Ciardelli G, Boffito M, Mattu C. In vitro models of bacterial biofilms: innovative tools to improve understanding and treatment of infections. Nanomaterials. 13(5): 904 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crusz SA, Popat R, Rybtke MT, Camara M, Givskov M, Tolker-Nielsen T, Diggle SP, Williams P. Bursting the bubble on bacterial biofilms: a flow cell methodology. Biofouling. 28: 835-842 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curtin JJ, Donlan RM. Using bacteriophages to reduce formation of catheter-associated biofilms by Staphylococcus epidermidis. Antimicrob. Agents Chemother. 50: 1268-1275 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epstein AK, Wong TS, Belisle RA, Boggs EM, Aizenberg J. Liquid-infused structured surfaces with exceptional anti-biofouling performance. Proc. Natl. Acad. Sci. 109(33): 13182-13187 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ersanli C, Tzora A, Skoufos I, Fotou K, Maloupa E, Grigoriadou K, Voidarou C, Zeugolis DI. The assessment of antimicrobial and anti-biofilm activity of essential oils against Staphylococcus aureus strains. Antibiotics. 12(2): 384 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farjami A, Hatami MS, Siahi‐Shadbad MR, Lotfipour F. Peracetic acid activity on biofilm formed by Escherichia coli isolated from an industrial water system. Lett. Appl. Microbiol. 74(4): 613-621 (2022)

    Article  CAS  PubMed  Google Scholar 

  • Fletcher M, Loeb GI. Influence of substratum characteristics on the attachment of a marine pseudomonad to solid surfaces. Appl. Environ. Microbiol. 37(1): 67-72 (1979)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ginige MP, Garbin S, Wylie J, Krishna KB. Effectiveness of devices to monitor biofouling and metals deposition on plumbing materials exposed to a full-scale drinking water distribution system. PloS One. 12(1): e0169140 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  • Goeres DM, Hamilton MA, Beck NA, Buckingham-Meyer K, Hilyard JD, Loetterle LR, Lorenz LA, Walker DK, Stewart PS. A method for growing a biofilm under low shear at the air–liquid interface using the drip flow biofilm reactor. Nat. Protoc. 4: 783-788 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Goeres DM, Parker AE, Walker DK, Meier K, Lorenz LA, Buckingham-Meyer K. Drip flow reactor method exhibits excellent reproducibility based on a 10-laboratory collaborative study. J. Microbiol. Methods. 174: 105963 (2020)

    Article  CAS  PubMed  Google Scholar 

  • Gomes LC, Mergulhão FJ. A selection of platforms to evaluate surface adhesion and biofilm formation in controlled hydrodynamic conditions. Microorganisms. 9(9): 1993 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall-Stoodley L, Rayner JC, Stoodley P, Lappin-Scott HM. Establishment of experimental biofilms using the modified Robbins device and flow cells. pp. 307-319. In: Environmental Monitoring of Bacteria. Edwards C (ed). Springer, Cham, Switzerland (1999)

    Chapter  Google Scholar 

  • Han N, Mizan MFR, Jahid IK, Ha SD. Biofilm formation by Vibrio parahaemolyticus on food and food contact surfaces increases with rise in temperature. Food Control. 70: 161-166 (2016)

    Article  CAS  Google Scholar 

  • Hassan A, Usman J, Kaleem F, Omair M, Khalid A, Iqbal M. Evaluation of different detection methods of biofilm formation in the clinical isolates. Brazilian J. Infect. Dis. 15: 305-311 (2011)

    Article  PubMed  Google Scholar 

  • Jang A, Szabo J, Hosni AA, Coughlin M, Bishop PL. Measurement of chlorine dioxide penetration in dairy process pipe biofilms during disinfection. Appl. Microbiol. Biotechnol. 72: 368-376 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Zhang T, Samaranayake YH, Fang HHP, Yip HK, Samaranayake LP. The use of new probes and stains for improved assessment of cell viability and extracellular polymeric substances in Candida albicans biofilms. Mycopathologia. 159: 353-360 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Jurgens DJ, Sattar SA, Mah TF. Chloraminated drinking water does not generate bacterial resistance to antibiotics in Pseudomonas aeruginosa biofilms. Lett. Appl. Microbiol. 46(5): 562-567 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Laverty G, Alkawareek MY, Gilmore BF. The in vitro susceptibility of biofilm forming medical device related pathogens to conventional antibiotics. Dataset Pap. Sci. 2014: 1-10 (2014)

    Article  Google Scholar 

  • Liu X, Yao H, Zhao X, Ge C. Biofilm formation and control of foodborne pathogenic bacteria. Molecules. 28: 2432 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macia MD, Rojo-Molinero E, Oliver A. Antimicrobial susceptibility testing in biofilm-growing bacteria. 20(10): 981-990 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Magana M, Sereti C, Ioannidis A, Mitchell CA, Ball AR, Magiorkinis E, Chatzipanagiotou S, Hamblin MR, Hadjifrangiskou M, Tegos GP. Options and limitations in clinical investigation of bacterial biofilms. Crit. Microbiol. Rev. 31: e00084-16 (2018)

    CAS  Google Scholar 

  • Mazaheri T, Cervantes-Huamán BRH, Bermúdez-Capdevila M, Ripolles-Avila C, Rodríguez-Jerez JJ. Listeria monocytogenes biofilms in the food industry: Is the current hygiene program sufficient to combat the persistence of the pathogen? Microorganisms. 9: 181 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mccoy WF, Bryers JD, Robbins J, Costerton JW. Observations of fouling biofilm formation. Can. J. Microbiol. 27(9): 910-917 (1981)

    Article  CAS  PubMed  Google Scholar 

  • Merritt JH, Kadouri DE, O’Toole GA. Growing and analyzing static biofilms. Curr. Protoc. Microbiol. 22(1): 1B.1.1-A.3M.13 (2011)

    Article  Google Scholar 

  • Olivares E, Badel-Berchoux S, Provot C, Jaulhac B, Prévost G, Bernardi T, Jehl F. The BioFilm Ring Test: a rapid method for routine analysis of Pseudomonas aeruginosa biofilm formation kinetics. J. Clin. Microbiol. 54(3): 657-661 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panda PS, Chaudhary U, Dube SK. Comparison of four different methods for detection of biofilm formation by uropathogens. Indian J. Pathol. Microbiol. 59(2): 177-179 (2016)

    Article  PubMed  Google Scholar 

  • Parahitiyawa NB, Samaranayake YH, Samaranayake LP, Ye J, Tsang PWK, Cheung BPK, Yau JYY, Yeung SKW. Interspecies variation in Candida biofilm formation studied using the Calgary biofilm device. APMIS. 114(4): 298-306 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Percival SL, Suleman L, Vuotto C, Donelli G. Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. J. Med. Microbiol. 64: 323-334 (2015)

    Article  PubMed  Google Scholar 

  • Pitts B, Willse A, McFeters GA, Hamilton MA, Zelver N, Stewart PS. A repeatable laboratory method for testing the efficacy of biocides against toilet bowl biofilms. J. Appl. Microbiol. 91: 110-117 (2001)

    Article  CAS  PubMed  Google Scholar 

  • Qu Y, McGiffin D, Kure C, Ozcelik B, Fraser J, Thissen H, Peleg AY. Biofilm formation and migration on ventricular assist device drivelines. J. Thorac. Cardiovasc. Surg. 159(2): 491-502 (2020)

    Article  PubMed  Google Scholar 

  • Raad I, Hanna H, Dvorak T, Chaiban G, Hachem R. Optimal antimicrobial catheter lock solution, using different combinations of minocycline, EDTA, and 25-percent ethanol, rapidly eradicates organisms embedded in biofilm. Antimicrob. Agents Chemother. 51(1): 78-83 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Renier S, Chagnot C, Deschamps J, Caccia N, Szlavik J, Joyce SA, Popowska M, Hill C, Knøchel S, Briandet R, Hébraud M, Desvaux M. Inactivation of the SecA2 protein export pathway in Listeria monocytogenes promotes cell aggregation, impacts biofilm architecture and induces biofilm formation in environmental condition. Environ. Microbiol. 16(4): 1176–1192 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Rewatkar AR, Wadher BJ. Staphylococcus aureus and Pseudomonas aeruginosa-Biofilm formation methods. IOSR J. Pharm. Biol. Sci. 8(5): 36-40 (2013)

    Google Scholar 

  • Robertson M, Hapca SM, Moshynets O, Spiers AJ. Air–liquid interface biofilm formation by psychrotrophic pseudomonads recovered from spoilt meat. Antonie van Leeuwenhoek. 103: 251-259 (2013)

    Article  PubMed  Google Scholar 

  • Salta M, Dennington SP, Wharton J A. Biofilm inhibition by novel natural product-and biocide-containing coatings using high-throughput screening. Int. J. Mol. Sci. 19(5): 1434 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwartz K, Stephenson R, Hernandez M, Jambang N, Boles BR. The use of drip flow and rotating disk reactors for Staphylococcus aureus biofilm analysis. J. Vis. Exp. 46: e2470 (2010)

    Google Scholar 

  • Srey S, Jahid IK, Ha SD. Biofilm formation in food industries: A food safety concern. Food Control. 31: 572–585 (2013)

    Article  Google Scholar 

  • Tran PL, Hammond AA, Mosley T, Cortez J, Gray T, Colmer-Hamood JA, Shashtri M, Spallholz JE, Hamood AN, Reid TW. Organoselenium coating on cellulose inhibits the formation of biofilms by Pseudomonas aeruginosa and Staphylococcus aureus. Appl. Environ. Microbiol. 75: 3586-3592 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Houdt R, Michiels CW. Biofilm formation and the food industry, a focus on the bacterial outer surface. J. Appl. Microbiol. 109: 1117-1131 (2010)

    Article  PubMed  Google Scholar 

  • Willcock L, Gilbert P, Holah J, Wirtanen G, Allison DG. A new technique for the performance evaluation of clean-in-place disinfection of biofilms. J. Ind. Microbiol. Biotechnol. 25: 235-241 (2000)

    Article  CAS  Google Scholar 

  • Woodworth BA, Tamashiro E, Bhargave G, Cohen NA, Palmer JN. An in vitro model of Pseudomonas aeruginosa biofilms on viable airway epithelial cell monolayers. Am. J. Rhinol. 22(3): 235-238 (2008)

    Article  PubMed  Google Scholar 

  • Wright E, Neethirajan S, Weng X. Microfluidic wound model for studying the behaviors of Pseudomonas aeruginosa in polymicrobial biofilms. Biotechnol. Bioeng. 112(11): 2351-2359 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Ye Y, Ling N, Jiao R, Wu Q, Han Y, Gao J. Effects of culture conditions on the biofilm formation of Cronobacter sakazakii strains and distribution of genes involved in biofilm formation. LWT-Food Sci. Technol. 62(1): 1-6 (2015)

    Article  CAS  Google Scholar 

  • Yin W, Wang Y, Liu L, He J. Biofilms: The microbial “protective clothing” in extreme environments. Int. J. Mol. Sci. 20: 3423 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of Food and Drug Safety (22192MFDS024) in 2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Young Lee.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, A., Lee, SY. An overview of various methods for in vitro biofilm formation: a review. Food Sci Biotechnol 32, 1617–1629 (2023). https://doi.org/10.1007/s10068-023-01425-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-023-01425-8

Keywords

Navigation