Skip to main content
Log in

The functional roles of short chain fatty acids as postbiotics in human gut: future perspectives

  • Review
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The significance of gut microbiome and their metabolites (postbiotics) on human health could be a promising approach to treat various diseases that includes inflammatory bowel diseases, colon cancer, and many neurological disorders. Probiotics with potential mental health benefits (psychobiotics) can alter the gut-brain axis via immunological, humoral, neuronal, and metabolic pathways. Recently, probiotic bacteria like Lactobacillus and Bifidobacterium have been demonstrated for SCFAs production, which play a crucial role in a variety of diseases. These acids could enhance the production of mucins, antimicrobial proteins (bacteriocins and peptides), cytokines (Interleukin 10 and 18) and neurotransmitters (serotonin) in the intestine to main the gut microbiota, intestinal barrier system and other immune functions. In this review, we discuss about two mechanisms such as (i) SCFAs mediated intestinal barrier system, and (ii) SCFAs mediated gut-brain axis to elucidate the therapeutic options for the treatment/prevention of various diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abraham C, Medzhitov R. Interactions between the host innate immune system and microbes in inflammatory bowel disease. Gastroenterology. 6: 1729-1737 (2011)

    Google Scholar 

  • Aoki R, Kamikado K, Suda W, Takii H, Mikami Y, Suganuma NN, Hattori M, Koga Y. A proliferative probiotic Bifidobacterium strain in the gut ameliorates progression of metabolic disorders via microbiota modulation and acetate elevation. Scientific Reports. 7: 1-10 (2017)

    Google Scholar 

  • Auger S, Kropp C, Borras-Nogues E, Chanput W, Andre-Leroux G, Gitton-Quent O, Benevides L, Breyner N, Azevedo V, Langella P, Chatel JM. Intraspecific diversity of microbial anti-Inflammatory molecule (MAM) from Faecalibacterium prausnitzii. International Journal of Molecular Sciences. 3: 1705 (2022)

    Google Scholar 

  • Bai Y, Zhang Y, Wang Z, Pi Y, Zhao J, Wang S, Han D, Wang J. Amylopectin Partially Substituted by Cellulose in the Hindgut Was Beneficial to Short-Chain Fatty Acid Production and Probiotic Colonization. Microbiology Spectrum. 1: e03815-22 (2023)

    Google Scholar 

  • Bhattarai Y, Schmidt BA, Linden DR, Larson ED, Grover M, Beyder A, Farrugia G, Kashyap PC. Human-derived gut microbiota modulates colonic secretion in mice by regulating 5-HT3 receptor expression via acetate production. American Journal of Physiology-Gastrointestinal and Liver Physiology. 1: G80-7 (2017).

    Google Scholar 

  • Bibiloni R, Fedorak RN, Tannock GW, Madsen KL, Gionchetti P, Campieri M, De Simone C, Sartor RB. VSL# 3 probiotic-mixture induces remission in patients with active ulcerative colitis. Journal of the American College of Gastroenterology| ACG. 7: 1539-1546 (2005)

    Google Scholar 

  • BranisteV, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Tóth M, Korecka A, Bakocevic N, Ng LG, Kundu P, Pettersson S. The gut microbiota influences blood-brain barrier permeability in mice. Science Translational Medicine. 263: 158 (2014)

    Google Scholar 

  • Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, Muir AI, Wigglesworth MJ, Kinghorn I, Fraser NJ, Pike NB. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. Journal of Biological Chemistry. 13: 11312-11319 (2003)

    Google Scholar 

  • Cani PD. The gut microbiota manages host metabolism. Nature Reviews Endocrinology. 2: 74-76 (2014)

    Google Scholar 

  • Chang JT. Pathophysiology of inflammatory bowel diseases. New England Journal of Medicine. 27: 2652-2664 (2020)

    Google Scholar 

  • Chang PV, Hao L, Offermanns S, Medzhitov R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proceedings of the National Academy of Sciences. 6: 2247-2252 (2014)

  • Chen Y, Shen X, Ma T, Yu X, Kwok LY, Li Y, Sun Z, Li D, Zhang H. Adjunctive Probio-X Treatment Enhances the Therapeutic Effect of a Conventional Drug in Managing Type 2 Diabetes Mellitus by Promoting Short-Chain Fatty Acid-Producing Bacteria and Bile Acid Pathways. Msystems. 1: e01300-22 (2023).

    Google Scholar 

  • Choi Y, Choi SI, Kim N, Nam RH, Jang JY, Na HY, Shin CM, Lee DH, Min H, Kim YR, Seok YJ. Effect of Clostridium butyricum on High-Fat Diet-Induced Intestinal Inflammation and Production of Short-Chain Fatty Acids. Digestive Diseases and Sciences. 21: 1-4 (2023)

    Google Scholar 

  • Chriett S, Dąbek A, Wojtala M, Vidal H, Balcerczyk A, Pirola L. Prominent action of butyrate over β-hydroxybutyrate as histone deacetylase inhibitor, transcriptional modulator and anti-inflammatory molecule. Scientific Reports. 1: 742 (2019)

    Google Scholar 

  • Cruz-Pereira JS, Rea K, Nolan YM, O’Leary OF, Dinan TG, Cryan JF. Depression’s unholy trinity: dysregulated stress, immunity, and the microbiome. Annual review of psychology. 71: 49-78 (2020)

    PubMed  Google Scholar 

  • Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota–gut–brain communication. Nature reviews Gastroenterology & hepatology. 8: 461-478 (2019)

    Google Scholar 

  • Dalile B, Vervliet B, Bergonzelli G, Verbeke K, Van Oudenhove L. Colon-delivered short-chain fatty acids attenuate the cortisol response to psychosocial stress in healthy men: a randomized, placebo-controlled trial. Neuropsychopharmacology. 13: 2257-2266 (2020)

    Google Scholar 

  • Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi SJ, Berenjian A, Ghasemi Y. Prebiotics: definition, types, sources, mechanisms, and clinical applications. 3: 92 (2019)

  • Davie JR. (2003) Inhibition of histone deacetylase activity by butyrate. The Journal of Nutrition. 7: 2485S-93S 

    Google Scholar 

  • de Vos WM, Tilg H, Van Hul M, Cani PD. Gut microbiome and health: mechanistic insights. Gut. 5: 1020-1032 (2022)

    Google Scholar 

  • Di Martino L, Osme A, Ghannoum M, Cominelli F. A novel probiotic combination ameliorates Crohn’s disease–like ileitis by increasing short-chain fatty acid production and modulating essential adaptive immune pathways. Inflammatory Bowel Diseases. izac284 (2023).

  • Din AU, Hassan A, Zhu Y, Zhang K, Wang Y, Li T, Wang Y, Wang G. Inhibitory effect of Bifidobacterium bifidum ATCC 29521 on colitis and its mechanism. The Journal of Nutritional Biochemistry. 79: 108353 (2020)

    CAS  PubMed  Google Scholar 

  • Dong Y, Cui C. The role of short-chain fatty acids in central nervous system diseases. Molecular and Cellular Biochemistry. 11: 2595-2607 (2022)

    Google Scholar 

  • Dragano NR, Solon C, Ramalho AF, de Moura RF, Razolli DS, Christiansen E, Azevedo C, Ulven T, Velloso LA. Polyunsaturated fatty acid receptors, GPR40 and GPR120, are expressed in the hypothalamus and control energy homeostasis and inflammation. Journal of Neuroinflammation. 1: 1-6 (2017)

    Google Scholar 

  • Erny D, Hrabě de Angelis AL, Prinz M. Communicating systems in the body: how microbiota and microglia cooperate. Immunology. 1: 7-15 (2017)

    Google Scholar 

  • Fellows R, Denizot J, Stellato C, Cuomo A, Jain P, Stoyanova E, Balázsi S, Hajnády Z, Liebert A, Kazakevych J, Blackburn H. Microbiota derived short chain fatty acids promote histone crotonylation in the colon through histone deacetylases. Nature Communications. 1: 105 (2018)

    Google Scholar 

  • Flint HJ, Duncan SH, Scott KP, Louis P. Links between diet, gut microbiota composition and gut metabolism. Proceedings of the Nutrition Society. 1: 13-22 (2015)

  • Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nature Neuroscience. 2: 145-155 (2017)

    Google Scholar 

  • Gabriel FC, Fantuzzi G. The association of short-chain fatty acids and leptin metabolism: a systematic review. Nutrition Research. 72:18-35 (2019)

    CAS  PubMed  Google Scholar 

  • Hotel AC, Cordoba A. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Prevention. 1: 1-10 (2001)

    Google Scholar 

  • Hoyles L, Snelling T, Umlai UK, Nicholson JK, Carding SR, Glen RC, McArthur S. Microbiome–host systems interactions: protective effects of propionate upon the blood–brain barrier. Microbiome. 1: 1-3 (2018)

    Google Scholar 

  • Inoue D, Tsujimoto G, Kimura I. Regulation of Energy Homeostasis by GPR41. Front Endocrinol (Lausanne) 5: 81 (2014)

    PubMed  Google Scholar 

  • Kim MH, Kang SG, Park JH, Yanagisawa M, Kim CH. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology. 2: 396-406 (2013)

    Google Scholar 

  • Lee C, Kim BG, Kim JH, Chun J, Im JP, Kim JS. Sodium butyrate inhibits the NF-kappa B signaling pathway and histone deacetylation, and attenuates experimental colitis in an IL-10 independent manner. International Immunopharmacology. 51: 47-56 (2017)

    CAS  PubMed  Google Scholar 

  • Li Z, Yi CX, Katiraei S, Kooijman S, Zhou E, Chung CK, Gao Y, van den Heuvel JK, Meijer OC, Berbée JF, Heijink M. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut. 7: 1269-1279 (2018)

    Google Scholar 

  • Lim SJ, Kwon HC, Shin DM, Choi YJ, Han SG, Kim YJ, Han SG. Apoptosis-Inducing Effects of Short-Chain Fatty Acids-Rich Fermented Pistachio Milk in Human Colon Carcinoma Cells. Foods. 1: 189 (2023)

    Google Scholar 

  • Liu J, Li H, Gong T, Chen W, Mao S, Kong Y, Yu J, Sun J. Anti-neuroinflammatory effect of short-chain fatty acid acetate against Alzheimer’s disease via upregulating GPR41 and inhibiting ERK/JNK/NF-κB. Journal of Agricultural and Food Chemistry. 27: 7152-7161 (2020)

    Google Scholar 

  • Llewellyn A, Foey A. Probiotic modulation of innate cell pathogen sensing and signaling events. Nutrients. 10: 1156 (2017)

    Google Scholar 

  • Ma L, Ni Y, Wang Z, Tu W, Ni L, Zhuge F, Zheng A, Hu L, Zhao Y, Zheng L, Fu Z. Spermidine improves gut barrier integrity and gut microbiota function in diet-induced obese mice. Gut Microbes. 1: 1832857 (2020)

    Google Scholar 

  • Markowiak P, Śliżewska K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients. 9: 1021 (2017)

    PubMed  PubMed Central  Google Scholar 

  • Markowiak-Kopeć P, Śliżewska K. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients. 4: 1107 (2020)

    Google Scholar 

  • Marques FZ, Nelson E, Chu PY, Horlock D, Fiedler A, Ziemann M, Tan JK, Kuruppu S, Rajapakse NW, El-Osta A, Mackay CR. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation. 10: 964-977 (2017)

    Google Scholar 

  • Masui R, Sasaki M, Funaki Y, Ogasawara N, Mizuno M, Iida A, Izawa S, Kondo Y, Ito Y, Tamura Y, Yanamoto K. G protein-coupled receptor 43 moderates gut inflammation through cytokine regulation from mononuclear cells. Inflammatory Bowel Diseases. 13: 2848-2856 (2013)

    Google Scholar 

  • Moens F, Van den Abbeele P, Basit AW, Dodoo C, Chatterjee R, Smith B, Gaisford S. A four-strain probiotic exerts positive immunomodulatory effects by enhancing colonic butyrate production in vitro. International Journal of Pharmaceutics. 555: 1-10 (2019)

    CAS  PubMed  Google Scholar 

  • Nan X, Zhao W, Liu WH, Li Y, Li N, Hong Y, Cui J, Shang X, Feng H, Hung WL, Peng G. Bifidobacterium animalis subsp. lactis BL-99 ameliorates colitis-related lung injury in mice by modulating short-chain fatty acid production and inflammatory monocytes/macrophages. Food & Function. 2: 1099-1112 (2023)

    Google Scholar 

  • Nøhr MK, Egerod KL, Christiansen SH, Gille A, Offermanns S, Schwartz TW, Møller M. Expression of the short chain fatty acid receptor GPR41/FFAR3 in autonomic and somatic sensory ganglia. Neuroscience. 290: 126-137 (2015)

    PubMed  Google Scholar 

  • O’Riordan KJ, Collins MK, Moloney GM, Knox EG, Aburto MR, Fülling C, Morley SJ, Clarke G, Schellekens H, Cryan JF. Short chain fatty acids: Microbial metabolites for gut-brain axis signalling. Molecular and Cellular Endocrinology. 546: 111572 (2022)

    PubMed  Google Scholar 

  • Omenetti S, Pizarro TT. The Treg/Th17 axis: a dynamic balance regulated by the gut microbiome. Frontiers in Immunology. 6: 639 (2015)

    PubMed  PubMed Central  Google Scholar 

  • Panebianco C, Villani A, Pisati F, Orsenigo F, Ulaszewska M, Latiano TP, Potenza A, Andolfo A, Terracciano F, Tripodo C, Perri F. Butyrate, a postbiotic of intestinal bacteria, affects pancreatic cancer and gemcitabine response in in vitro and in vivo models. Biomedicine & Pharmacotherapy. 151: 113163 (2022).

    CAS  Google Scholar 

  • Park S, Kang J, Choi S, Park H, Hwang E, Kang Y, Kim A, Holzapfel W, Ji Y. Cholesterol-lowering effect of Lactobacillus rhamnosus BFE5264 and its influence on the gut microbiome and propionate level in a murine model. PLoS ONE. 8: e0203150 (2018)

    Google Scholar 

  • Patnala R, Arumugam TV, Gupta N, Dheen ST. HDAC inhibitor sodium butyrate-mediated epigenetic regulation enhances neuroprotective function of microglia during ischemic stroke. Molecular Neurobiology. 54: 6391-6411 (2017)

    CAS  PubMed  Google Scholar 

  • Perry RJ, Peng L, Barry NA, Cline GW, Zhang D, Cardone RL, Petersen KF, Kibbey RG, Goodman AL, Shulman GI. Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome. Nature. 7606: 213-217 (2016)

    Google Scholar 

  • Pingitore A, Gonzalez-Abuin N, Ruz‐Maldonado I, Huang GC, Frost G, Persaud SJ. (2019) Short chain fatty acids stimulate insulin secretion and reduce apoptosis in mouse and human islets in vitro: Role of free fatty acid receptor 2. Diabetes, Obesity and Metabolism. 2: 330-339 

    Google Scholar 

  • Pluznick JL. Microbial short-chain fatty acids and blood pressure regulation. Current Hypertension Reports. 19: 1-5 (2017)

    CAS  Google Scholar 

  • Price AE, Shamardani K, Lugo KA, Deguine J, Roberts AW, Lee BL, Barton GM. A map of toll-like receptor expression in the intestinal epithelium reveals distinct spatial, cell type-specific, and temporal patterns. Immunity. 3: 560-575 (2018)

    Google Scholar 

  • Ramirez K, Fornaguera-Trías J, Sheridan JF. Stress-induced microglia activation and monocyte trafficking to the brain underlie the development of anxiety and depression. Inflammation-Associated Depression: Evidence, Mechanisms and Implications. 1: 155-172 (2017)

    Google Scholar 

  • Ratajczak W, Rył A, Mizerski A, Walczakiewicz K, Sipak O, Laszczyńska M. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs). Acta Biochimica Polonica. 1: 1-2 (2019)

    Google Scholar 

  • Salminen S, Collado MC, Endo A, Hill C, Lebeer S, Quigley EM, Sanders ME, Shamir R, Swann JR, Szajewska H, Vinderola G. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nature Reviews Gastroenterology & Hepatology. 9: 649-667 (2021)

    Google Scholar 

  • Sekhavat A, Sun JM, Davie JR. Competitive inhibition of histone deacetylase activity by trichostatin A and butyrate. Biochemistry and Cell Biology. 6: 751-758 (2007)

    Google Scholar 

  • Selvamani S, Mehta V, El Enshasy HA, Thevarajoo S, El Adawi H, Zeini I, Pham K, Varzakas T, Abomoelak B. Efficacy of probiotics-based interventions as therapy for inflammatory bowel disease: a recent update. Saudi Journal of Biological Sciences. 5: 3546-3567 (2022)

    Google Scholar 

  • Shakespear MR, Halili MA, Irvine KM, Fairlie DP, Sweet MJ. Histone deacetylases as regulators of inflammation and immunity. Trends in Immunology. 7: 335-343 (2011)

    Google Scholar 

  • Shimizu H, Masujima Y, Ushiroda C, Mizushima R, Taira S, Ohue-Kitano R, Kimura I. Dietary short-chain fatty acid intake improves the hepatic metabolic condition via FFAR3. Scientific Reports.1: 16574 (2019)

    Google Scholar 

  • Silva YP, Bernardi A, Frozza RL. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Frontiers in Endocrinology. 11: 25 (2020)

    PubMed  PubMed Central  Google Scholar 

  • Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi H, Thangaraju M, Prasad PD, Manicassamy S, Munn DH, Lee JR. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity. 1: 128-139 (2014)

    Google Scholar 

  • Singh RK, Chang HW, Yan DI, Lee KM, Ucmak D, Wong K, Abrouk M, Farahnik B, Nakamura M, Zhu TH, Bhutani T. Influence of diet on the gut microbiome and implications for human health. Journal of Translational Medicine. 1: 1-7 (2017)

    Google Scholar 

  • Sommer F, Bäckhed F. The gut microbiota—masters of host development and physiology. Nature Reviews Microbiology. 4: 227-238 (2013)

    Google Scholar 

  • Spichak S, Donoso F, Moloney GM, Gunnigle E, Brown JM, Codagnone M, Dinan TG, Cryan JF. (2021) Microbially-derived short-chain fatty acids impact astrocyte gene expression in a sex-specific manner. Brain, Behavior, & Immunity-Health. 16: 100318 

    CAS  Google Scholar 

  • Štofilová J, Kvaková M, Kamlárová A, Hijová E, Bertková I, Guľašová Z. Probiotic-based intervention in the treatment of ulcerative colitis: conventional and new approaches. Biomedicines. 9: 2236 (2022)

    Google Scholar 

  • Sun J, Xu J, Yang B, Chen K, Kong Y, Fang N, Gong T, Wang F, Ling Z, Liu J. (2020) Effect of Clostridium butyricum against microglia-mediated neuroinflammation in Alzheimer’s disease via regulating gut microbiota and metabolites butyrate. Molecular Nutrition & Food Research. 2: 1900636 

    Google Scholar 

  • Tahara Y, Yamazaki M, Sukigara H, Motohashi H, Sasaki H, Miyakawa H, Haraguchi A, Ikeda Y, Fukuda S, Shibata S. Gut microbiota-derived short chain fatty acids induce circadian clock entrainment in mouse peripheral tissue. Scientific Reports. 1: 1395 (2018)

    Google Scholar 

  • Tan JK, McKenzie C, Mariño E, Macia L, Mackay CR. Metabolite-sensing G protein–coupled receptors—facilitators of diet-related immune regulation. Annual Review of Immunology. 35: 371–402 (2017)

    CAS  PubMed  Google Scholar 

  • Tarawneh R, Penhos E. The gut microbiome and Alzheimer’s disease: Complex and bidirectional interactions. Neuroscience & Biobehavioral Reviews. 1: 104814 (2022)

    Google Scholar 

  • Tian X, Hellman J, Horswill AR, Crosby HA, Francis KP, Prakash A. Elevated gut microbiome-derived propionate levels are associated with reduced sterile lung inflammation and bacterial immunity in mice. Frontiers in Microbiology. 10: 159 (2019)

    PubMed  PubMed Central  Google Scholar 

  • Todorov SD, Kang HJ, Ivanova IV, Holzapfel WH. Bacteriocins from LAB and other alternative approaches for the control of Clostridium and Clostridiodes related gastrointestinal colitis. Frontiers in Bioengineering and Biotechnology. 8: 581778 (2020)

    PubMed  PubMed Central  Google Scholar 

  • Torres-Fuentes C, Golubeva AV, Zhdanov AV, Wallace S, Arboleya S, Papkovsky DB, El Aidy S, Ross P, Roy BL, Stanton C, Dinan TG. Short-chain fatty acids and microbiota metabolites attenuate ghrelin receptor signaling. The FASEB Journal. 12: 13546-13559 (2019)

    Google Scholar 

  • Toumi R, Samer A, Soufli I, Rafa H, Touil-Boukoffa C. (2021) Role of probiotics and their metabolites in inflammatory bowel diseases (IBDs). Gastroenterology Insights. 1: v56-66 

    Google Scholar 

  • Van de Wouw M, Schellekens H, Dinan TG, Cryan JF. Microbiota-gut-brain axis: modulator of host metabolism and appetite. The Journal of Nutrition. 5: 727-745 (2017)

    Google Scholar 

  • Vinolo MA, Rodrigues HG, Hatanaka E, Sato FT, Sampaio SC, Curi R. Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils. The Journal of Nutritional Biochemistry. 9: 849-855 (2011)

    Google Scholar 

  • Waldecker M, Kautenburger T, Daumann H, Busch C, Schrenk D. Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. The Journal of Nutritional Biochemistry. 9: 587-593 (2008)

    Google Scholar 

  • Wang P, Zhang Y, Gong Y, Yang R, Chen Z, Hu W, Wu Y, Gao M, Xu X, Qin Y, Huang C. Sodium butyrate triggers a functional elongation of microglial process via Akt-small RhoGTPase activation and HDACs inhibition. Neurobiology of Disease. 111: 12-25 (2018)

    CAS  PubMed  Google Scholar 

  • Wu J, Zhou B, Pang X, Song X, Gu Y, Xie R, Liu T, Xu X, Wang B, Cao H. Clostridium butyricum, a butyrate-producing potential probiotic, alleviates experimental colitis through epidermal growth factor receptor activation. Food & Function. 13: 7046-7061 (2022)

    CAS  Google Scholar 

  • Xiao T, Wu S, Yan C, Zhao C, Jin H, Yan N, Xu J, Wu Y, Li C, Shao Q, Xia S. Butyrate upregulates the TLR4 expression and the phosphorylation of MAPKs and NK–κB in colon cancer cell in vitro. Oncology Letters. 4: 4439-4447 (2018)

    Google Scholar 

  • Yadav S, Dwivedi A, Tripathi A, Tripathi AK. Therapeutic potential of Short Chain Fatty acid production by gut microbiota in Neurodegenerative disorders. Nutrition Research. (2022)

  • Yonezawa T, Kurata R, Yoshida K, A Murayama M, Cui X, Hasegawa A. Free fatty acids-sensing G protein-coupled receptors in drug targeting and therapeutics. Current Medicinal Chemistry. 31: 3855-3871 (2013)

    Google Scholar 

  • Yoon JI, Cho H, Jeon R, Sung MK. Therapeutic efficacy of novel HDAC inhibitors SPA3052 and SPA3074 against intestinal inflammation in a murine model of colitis. Pharmaceuticals. 12: 1515 (2022)

    Google Scholar 

  • Zheng L, Kelly CJ, Battista KD, Schaefer R, Lanis JM, Alexeev EE, Wang RX, Onyiah JC, Kominsky DJ, Colgan SP. Microbial-derived butyrate promotes epithelial barrier function through IL-10 receptor–dependent repression of claudin-2. The Journal of Immunology. 8: 2976-2984 (2017)

    Google Scholar 

  • Żółkiewicz J, Marzec A, Ruszczyński M, Feleszko W. Postbiotics—a step beyond pre-and probiotics. Nutrients. 8: 2189 (2020)

    Google Scholar 

Download references

Acknowledgements

Authors are thankful to School of Life Sciences, BSACIST, Chennai, Tamil Nadu, India for providing all the facilities while collecting the experimental work. Manuscript do not receive any fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hemalatha.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest in this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ragavan, M.L., Hemalatha, S. The functional roles of short chain fatty acids as postbiotics in human gut: future perspectives. Food Sci Biotechnol 33, 275–285 (2024). https://doi.org/10.1007/s10068-023-01414-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-023-01414-x

Keywords

Navigation