Skip to main content

Dietary Modulation of the Nervous and Immune System: Role of Probiotics/Prebiotics/Synbiotics/Postbiotics

  • Chapter
  • First Online:
Probiotics, Prebiotics, Synbiotics, and Postbiotics
  • 649 Accesses

Abstract

The gut microbiota involves billions of microbial residents that live in the gastrointestinal tract. Gut microbiota is interconnected with multiple human physiological responses including neural, digestive, and immune system as well as hormonal responses either directly through the synthesis of bioactive components that alter hormones, incretin, and neurotransmitter release or indirectly through the regulation of leukocyte functions including cytokine production. The COVID-19 pandemic has stimulated growing interest towards exploring the functional aspects of nutrition, i.e., functional foods as “immune-booster”. Dysbiosis in the gut can alter the pre-existing microbiota that in turn affects the normal functionality of neurological, metabolic, hormonal, and immunological signalling pathways that leads to neurological and immunological disorders. Probiotics, prebiotics, synbiotics, and postbiotics that are an integral part of functional foods have shown strong association with gut–brain axis. Diet interventions have the potential to modulate or re-shape the gut microflora composition hence opening the opportunities of it to be exploited as alternative strategy for treating various diseases arising due to gut microbiota dysbiosis. A few recent studies have analysed changes in immunological markers as a result of dietary intervention. This chapter will include the potential prospects and challenges with respect to changing gut microbiota through diet and nutrition with the purpose of treat neuroimmune and neuroinflammatory diseases and improve the immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andre C, Dinel AL, Ferreira G, Laye S, Castanon N (2014) Diet-induced obesity progressively alters cognition, anxiety-like behavior and lipopolysaccharide-induced depressive-like behavior: focus on brain indoleamine 2, 3-dioxygenase activation. Brain Behav Immun 41:10–21

    CAS  PubMed  Google Scholar 

  • Asano Y, Hiramoto T, Nishino R, Aiba Y, Kimura T, Yoshihara K, Koga Y, Sudo N (2012) Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. American journal of physiology-gastrointestinal and liver. Physiology 303(11):G1288–G1295

    CAS  Google Scholar 

  • Bagarolli RA, Tobar N, Oliveira AG, Araújo TG, Carvalho BM, Rocha GZ, Vecina JF, Calisto K, Guadagnini D, Prada PO, Santos A (2017) Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice. J Nutr Biochem 50:16–25

    CAS  PubMed  Google Scholar 

  • Bercik P, Collins SM, Verdu EF (2012) Microbes and the gut-brain axis. Neurogastroenterology & Motility 24(5):405–413

    CAS  Google Scholar 

  • Bermúdez-Humarán LG, Salinas E, Ortiz GG, Ramirez-Jirano LJ, Morales JA, Bitzer-Quintero OK (2019) From probiotics to psychobiotics: live beneficial bacteria which act on the brain-gut axis. Nutrients 11(4):890

    PubMed  PubMed Central  Google Scholar 

  • Bindels LB, Delzenne NM, Cani PD, Walter J (2015) Towards a more comprehensive concept for prebiotics. Nat Rev Gastroenterol Hepatol 12(5):303–310

    CAS  PubMed  Google Scholar 

  • Boix-Amorós A, Collado MC, Mira A (2016) Relationship between milk microbiota, bacterial load, macronutrients, and human cells during lactation. Front Microbiol 7:492

    PubMed  PubMed Central  Google Scholar 

  • Bouchaud G, Castan L, Chesné J, Braza F, Aubert P, Neunlist M, Magnan A, Bodinier M (2016) Maternal exposure to GOS/inulin mixture prevents food allergies and promotes tolerance in offspring in mice. Allergy 71(1):68–76

    CAS  PubMed  Google Scholar 

  • Bravo JA, Julio-Pieper M, Forsythe P, Kunze W, Dinan TG, Bienenstock J, Cryan JF (2012) Communication between gastrointestinal bacteria and the nervous system. Curr Opin Pharmacol 12(6):667–672

    CAS  PubMed  Google Scholar 

  • Breit S, Kupferberg A, Rogler G, Hasler G (2018) Vagus nerve as modulator of the brain–gut axis in psychiatric and inflammatory disorders. Front Psych 9:44

    Google Scholar 

  • Busnelli M, Manzini S, Sirtori CR, Chiesa G, Parolini C (2018) Effects of vegetable proteins on hypercholesterolemia and gut microbiota modulation. Nutrients 10(9):1249

    PubMed  PubMed Central  Google Scholar 

  • Castro-Nallar E, Bendall ML, Pérez-Losada M, Sabuncyan S, Severance EG, Dickerson FB, Schroeder JR, Yolken RH, Crandall KA (2015) Composition, taxonomy and functional diversity of the oropharynx microbiome in individuals with schizophrenia and controls. PeerJ 3:e1140

    PubMed  PubMed Central  Google Scholar 

  • Chudzik A, Orzyłowska A, Rola R, Stanisz GJ (2021) Probiotics, prebiotics and postbiotics on mitigation of depression symptoms: modulation of the brain–gut–microbiome axis. Biomol Ther 11(7):1000

    CAS  Google Scholar 

  • Coury DL, Ashwood P, Fasano A, Fuchs G, Geraghty M, Kaul A, Mawe G, Patterson P, Jones NE (2012) Gastrointestinal conditions in children with autism spectrum disorder: developing a research agenda. Pediatrics 130(Supplement_2):S160–S168

    PubMed  Google Scholar 

  • Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13(10):701–712

    CAS  PubMed  Google Scholar 

  • Dagda RK, Banerjee TD (2015) Role of protein kinase A in regulating mitochondrial function and neuronal development: implications to neurodegenerative diseases. Rev Neurosci 26(3):359–370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Devanur LD, Kerr JR (2006) Chronic fatigue syndrome. J Clin Virol 37(3):139–150

    CAS  PubMed  Google Scholar 

  • Dinan TG, Borre YE, Cryan JF (2014) Genomics of schizophrenia: time to consider the gut microbiome? Mol Psychiatry 19(12):1252–1257

    CAS  PubMed  Google Scholar 

  • Dinan TG, Stanton C, Cryan JF (2013) Psychobiotics: a novel class of psychotropic. Biol Psychiatry 74(10):720–726

    CAS  PubMed  Google Scholar 

  • Dominguez-Bello MG, Jesus-Laboy D, Kassandra M, Shen N, Cox LM, Amir A, Gonzalez A, Bokulich NA, Song SJ, Hoashi M, Rivera-Vinas JI (2016) Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat Med 22(3):250–253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duerkop BA, Vaishnava S, Hooper LV (2009) Immune responses to the microbiota at the intestinal mucosal surface. Immunity 31(3):368–376

    CAS  PubMed  Google Scholar 

  • Estrada JA, Contreras I (2019) Nutritional modulation of immune and central nervous system homeostasis: the role of diet in development of neuroinflammation and neurological disease. Nutrients 11(5):1076

    CAS  PubMed  PubMed Central  Google Scholar 

  • El-Merahbi R, Löffler M, Mayer A, Sumara G (2015) The roles of peripheral serotonin in metabolic homeostasis. FEBS Lett 589(15):1728–1734

    CAS  PubMed  Google Scholar 

  • Fasano A, Visanji NP, Liu LW, Lang AE, Pfeiffer RF (2015) Gastrointestinal dysfunction in Parkinson's disease. The Lancet Neurology 14(6):625–639

    CAS  PubMed  Google Scholar 

  • Finegold SM, Molitoris D, Song Y, Liu C, Vaisanen ML, Bolte E, McTeague M, Sandler R, Wexler H, Marlowe EM, Collins MD (2002) Gastrointestinal microflora studies in late-onset autism. Clin Infect Dis 35(Supplement_1):S6–S16

    PubMed  Google Scholar 

  • Flegel WA, Müller F, Däubener W, Fischer HG, Hadding U, Northoff H (1991) Cytokine response by human monocytes to Clostridium difficile toxin A and toxin B. Infect Immun 59(10):3659–3666

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fooks LJ, Gibson GR (2002) Probiotics as modulators of the gut flora. Br J Nutr 88(S1):s39–s49

    CAS  PubMed  Google Scholar 

  • Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, Prifti E, Vieira-Silva S, Gudmundsdottir V, Krogh Pedersen H, Arumugam M (2015) Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528(7581):262–266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Forsythe P, Sudo N, Dinan T, Taylor VH, Bienenstock J (2010) Mood and gut feelings. Brain Behav Immun 24(1):9–16

    PubMed  Google Scholar 

  • Fung TC, Olson CA, Hsiao EY (2017) Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 20(2):145–155

    CAS  PubMed  PubMed Central  Google Scholar 

  • Furness JB (2012) The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 9(5):286–294

    CAS  PubMed  Google Scholar 

  • Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, Verbeke K (2017) Expert consensus document: the international scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 14(8):491–502

    PubMed  Google Scholar 

  • Gibson-Smith D, Bot M, Brouwer IA, Visser M, Penninx BWJH (2018) Diet quality in persons with and without depressive and anxiety disorders. J Psychiatr Res 106:1–7

    PubMed  Google Scholar 

  • Gismondo MR, Drago L, Lombardi A (1999) Review of probiotics available to modify gastrointestinal flora. Int J Antimicrob Agents 12(4):287–292

    CAS  PubMed  Google Scholar 

  • Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, Beaumont M, Van Treuren W, Knight R, Bell JT, Spector TD (2014) Human genetics shape the gut microbiome. Cell 159(4):789–799

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greshko M (2016) How many cells are in the human body–and how many microbes?” National Geographic Online, January 13. http://news.nationalgeographic.com/2016/01/160111-microbiome-estimate-count-ratio-humn-healthscience/

  • Hanson LÅ, Ahlstedt S, Carlsson B, Fällström SP, Kaijser B, Lindblad BS, Åkerlund AS, Eden CS (1978) New knowledge in human milk immunoglobulin. Acta Paediatr 67(5):577–582

    CAS  Google Scholar 

  • Hasegawa S, Goto S, Tsuji H, Okuno T, Asahara T, Nomoto K, Shibata A, Fujisawa Y, Minato T, Okamoto A, Ohno K (2015) Intestinal dysbiosis and lowered serum lipopolysaccharide-binding protein in Parkinson’s disease. PLoS One 10(11):e0142164

    PubMed  PubMed Central  Google Scholar 

  • Jones ML, Ganopolsky JG, Martoni CJ, Labbé A, Prakash S (2014) Emerging science of the human microbiome. Gut Microbes 5(4):446–457

    PubMed  Google Scholar 

  • Keshavarzian A, Green SJ, Engen PA, Voigt RM, Naqib A, Forsyth CB, Mutlu E, Shannon KM (2015) Colonic bacterial composition in Parkinson's disease. Mov Disord 30(10):1351–1360

    CAS  PubMed  Google Scholar 

  • Kobayashi Y, Sugahara H, Shimada K, Mitsuyama E, Kuhara T, Yasuoka A, Kondo T, Abe K, Xiao JZ (2017) Therapeutic potential of Bifidobacterium breve strain A1 for preventing cognitive impairment in Alzheimer’s disease. Sci Rep 7(1):1–10

    Google Scholar 

  • Kohler C, Maes M, Slyepchenko A, Berk M, Solmi M, Lanctôt L, K. and F Carvalho, A. (2016) The gut-brain axis, including the microbiome, leaky gut and bacterial translocation: mechanisms and pathophysiological role in Alzheimer’s disease. Curr Pharm Des 22(40):6152–6166

    CAS  PubMed  Google Scholar 

  • Lazar V, Ditu LM, Pircalabioru GG, Gheorghe I, Curutiu C, Holban AM, Picu A, Petcu L, Chifiriuc MC (2018) Aspects of gut microbiota and immune system interactions in infectious diseases, immunopathology, and cancer. Front Immunol 9:1830

    PubMed  PubMed Central  Google Scholar 

  • Lebouvier T, Chaumette T, Damier P, Coron E, Touchefeu Y, Vrignaud S, Naveilhan P, Galmiche JP, Des Varannes SB, Derkinderen P, Neunlist M (2008) Pathological lesions in colonic biopsies during Parkinson’s disease. Gut 57(12):1741–1743

    CAS  PubMed  Google Scholar 

  • Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S et al (2014) An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol 32(8):834–841

    CAS  PubMed  Google Scholar 

  • Li SW, Yu HR, Sheen JM, Tiao MM, Tain YL, Lin IC, Lin YJ, Chang KA, Tsai CC, Huang LT (2017) A maternal high-fat diet during pregnancy and lactation, in addition to a postnatal high-fat diet, leads to metabolic syndrome with spatial learning and memory deficits: beneficial effects of resveratrol. Oncotarget 8(67):111998

    PubMed  PubMed Central  Google Scholar 

  • Lloyd-Price J, Abu-Ali G, Huttenhower C (2016) The healthy human microbiome Genome medicine 8(1):1–11

    Google Scholar 

  • Maes M, Leonard BE, Myint AM, Kubera M, Verkerk R (2011) The new ‘5-HT’hypothesis of depression: cell-mediated immune activation induces indoleamine 2, 3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Prog Neuro-Psychopharmacol Biol Psychiatry 35(3):702–721

    CAS  Google Scholar 

  • Maes M, Leunis JC, Geffard M, Berk M (2014) Evidence for the existence of Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) with and without abdominal discomfort (irritable bowel) syndrome. Neuroendocrinol Lett 35:445–453

    PubMed  Google Scholar 

  • Maguire M, Maguire G (2019) Gut dysbiosis, leaky gut, and intestinal epithelial proliferation in neurological disorders: towards the development of a new therapeutic using amino acids, prebiotics, probiotics, and postbiotics. Rev Neurosci 30(2):179–201

    PubMed  Google Scholar 

  • Maraki MI, Yannakoulia M, Stamelou M, Stefanis L, Xiromerisiou G, Kosmidis MH, Dardiotis E, Hadjigeorgiou GM, Sakka P, Anastasiou CA, Simopoulou E (2019) Mediterranean diet adherence is related to reduced probability of prodromal Parkinson's disease. Mov Disord 34(1):48–57

    PubMed  Google Scholar 

  • Martyniak A, Medyńska-Przęczek A, Wędrychowicz A, Skoczeń S, Tomasik PJ (2021) Prebiotics, probiotics, Synbiotics, Paraprobiotics and postbiotic compounds in IBD. Biomol Ther 11(12):1903

    CAS  Google Scholar 

  • Nagy-Szakal D, Williams BL, Mishra N, Che X, Lee B, Bateman L, Klimas NG, Komaroff AL, Levine S, Montoya JG, Peterson DL (2017) Fecal metagenomic profiles in subgroups of patients with myalgic encephalomyelitis/chronic fatigue syndrome. Microbiome 5(1):1–17

    Google Scholar 

  • Nandwana V, Nandwana NK, Das Y, Saito M, Panda T, Das S, Almaguel F, Hosmane NS, Das BC (2022) The role of microbiome in brain development and neurodegenerative diseases. Molecules 27(11):3402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Núñez-Sánchez MA, Herisson FM, Cluzel GL, Caplice NM (2021) Metabolic syndrome and synbiotic targeting of the gut microbiome. Curr Opin Food Sci 41:60–69

    Google Scholar 

  • Ong IM, Gonzalez JG, McIlwain SJ, Sawin EA, Schoen AJ, Adluru N, Alexander AL, Yu JPJ (2018) Gut microbiome populations are associated with structure-specific changes in white matter architecture. Transl Psychiatry 8(1):1–11

    Google Scholar 

  • Patel S, McCormick BA (2014) Mucosal inflammatory response to salmonella typhimurium infection. Front Immunol 5:311

    PubMed  PubMed Central  Google Scholar 

  • Pei Y, He X, Xie Z (2004) Survival and differentiation of dopaminergic neurons can be regulated by soluble factors from cortex in vitro. Neuroreport 15(12):1847–1850

    CAS  PubMed  Google Scholar 

  • Peredo-Lovillo A, Romero-Luna HE, Jiménez-Fernández M (2020) Health promoting microbial metabolites produced by gut microbiota after prebiotics metabolism. Food Res Int 136:109473

    CAS  PubMed  Google Scholar 

  • Pineiro M, Asp NG, Reid G, Macfarlane S, Morelli L, Brunser O, Tuohy K (2008) FAO technical meeting on prebiotics. J Clin Gastroenterol 42:S156–S159

    PubMed  Google Scholar 

  • Pluznick J (2014) A novel SCFA receptor, the microbiota, and blood pressure regulation. Gut Microbes 5(2):202–207

    PubMed  Google Scholar 

  • Podolsky SH (2012) Metchnikoff and the microbiome. Lancet 380(9856):1810–1811

    PubMed  Google Scholar 

  • Poindexter B, Cummings J, Hand I, Adams-Chapman I, Aucott SW, Puopolo KM, Goldsmith JP, Kaufman D, Martin C, Mowitz M (2021) Use of probiotics in preterm infants. Pediatrics 147(6):e2021051485

    PubMed  Google Scholar 

  • Psaltopoulou T, Sergentanis TN, Panagiotakos DB, Sergentanis IN, Kosti R, Scarmeas N (2013) Mediterranean diet, stroke, cognitive impairment, and depression: a meta-analysis. Ann Neurol 74(4):580–591

    PubMed  Google Scholar 

  • Qiao Y, Wu M, Feng Y, Zhou Z, Chen L, Chen F (2018) Alterations of oral microbiota distinguish children with autism spectrum disorders from healthy controls. Sci Rep 8(1):1–12

    Google Scholar 

  • Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini A, Mele MC (2019) What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 7(1):14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez JM, Murphy K, Stanton C, Ross RP, Kober OI, Juge N, Avershina E, Rudi K, Narbad A, Jenmalm MC, Marchesi JR (2015) The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis 26(1):26050

    PubMed  Google Scholar 

  • Salat-Foix D, Tran K, Ranawaya R, Meddings J, Suchowersky O (2012) Increased intestinal permeability and Parkinson disease patients: chicken or egg? Can J Neurol Sci 39(2):185–188

    CAS  PubMed  Google Scholar 

  • Scarpellini E, Rinninella E, Basilico M, Colomier E, Rasetti C, Larussa T, Santori P, Abenavoli L (2021) From pre-and probiotics to post-biotics: a narrative review. Int J Environ Res Public Health 19(1):37

    PubMed  PubMed Central  Google Scholar 

  • Scheperjans F, Aho V, Pereira PA, Koskinen K, Paulin L, Pekkonen E, Haapaniemi E, Kaakkola S, Eerola-Rautio J, Pohja M, Kinnunen E (2015) Gut microbiota are related to Parkinson's disease and clinical phenotype. Mov Disord 30(3):350–358

    PubMed  Google Scholar 

  • Schwarz E, Maukonen J, Hyytiäinen T, Kieseppä T, Orešič M, Sabunciyan S, Mantere O, Saarela M, Yolken R, Suvisaari J (2018) Analysis of microbiota in first episode psychosis identifies preliminary associations with symptom severity and treatment response. Schizophr Res 192:398–403

    PubMed  Google Scholar 

  • Sekirov I, Russell SL, Antunes LCM, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90(3):859–904

    CAS  PubMed  Google Scholar 

  • Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14(8):e1002533

    PubMed  PubMed Central  Google Scholar 

  • Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1(1):a006189

    PubMed  PubMed Central  Google Scholar 

  • Severance EG, Gressitt KL, Stallings CR, Katsafanas E, Schweinfurth LA, Savage CL, Adamos MB, Sweeney KM, Origoni AE, Khushalani S, Dickerson FB (2017) Probiotic normalization of Candida albicans in schizophrenia: a randomized, placebo-controlled, longitudinal pilot study. Brain Behav Immun 62:41–45

    PubMed  Google Scholar 

  • Severance EG, Gressitt KL, Stallings CR, Katsafanas E, Schweinfurth LA, Savage CL, Adamos MB, Sweeney KM, Origoni AE, Khushalani S, Leweke FM (2016) Candida albicans exposures, sex specificity and cognitive deficits in schizophrenia and bipolar disorder. NPJ Schizophr 2(1):1–7

    Google Scholar 

  • Sheedy JR, Wettenhall RE, Scanlon D, Gooley PR, Lewis DP, Mcgregor N, Stapleton DI, Butt HL, De Meirleir KL (2009) Increased D-lactic acid intestinal bacteria in patients with chronic fatigue syndrome. In Vivo 23(4):621–628

    CAS  PubMed  Google Scholar 

  • Shenderov BA (2013) Metabiotics: novel idea or natural development of probiotic conception. Microb Ecol Health Dis 24(1):20399

    Google Scholar 

  • Shishov VA, Kirovskaya TA, Kudrin VS, Oleskin AV (2009) Amine neuromediators, their precursors, and oxidation products in the culture of Escherichia coli K-12. Appl Biochem Microbiol 45(5):494–497

    CAS  Google Scholar 

  • Snell CR, Stevens SR, Davenport TE, Van Ness JM (2013) Discriminative validity of metabolic and workload measurements for identifying people with chronic fatigue syndrome. Phys Ther 93(11):1484–1492

    PubMed  Google Scholar 

  • Soto M, Herzog C, Pacheco JA, Fujisaka S, Bullock K, Clish CB, Kahn CR (2018) Gut microbiota modulate neurobehavior through changes in brain insulin sensitivity and metabolism. Mol Psychiatry 23(12):2287–2301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strandwitz P (2018) Neurotransmitter modulation by the gut microbiota. Brain Res 1693:128–133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Q, Zhu L, Li Y, Cui Y, Jiang S, Tao N, Chen H, Zhao Z, Xu J, Dong C (2020) A novel inulin-type fructan from Asparagus cochinchinensis and its beneficial impact on human intestinal microbiota. Carbohydr Polym 247:116761

    CAS  PubMed  Google Scholar 

  • Swanson KS, Gibson GR, Hutkins R, Reimer RA, Reid G, Verbeke K, Scott KP, Holscher HD, Azad MB, Delzenne NM, Sanders ME (2020) The international scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat Rev Gastroenterol Hepatol 17(11):687–701

    PubMed  PubMed Central  Google Scholar 

  • Szewczyk A, Zagaja M, Bryda J, Kosikowska U, Stepien-Pysniak D, Winiarczyk S, Andres-Mach M (2019) Topinambur-new possibilities for use in a supplementation diet. Ann Agric Environ Med 26(1):24–28

    CAS  PubMed  Google Scholar 

  • Tomova A, Husarova V, Lakatosova S, Bakos J, Vlkova B, Babinska K, Ostatnikova D (2015) Gastrointestinal microbiota in children with autism in Slovakia. Physiol Behav 138:179–187

    CAS  PubMed  Google Scholar 

  • Torres DP, Gonçalves MDPF, Teixeira JA, Rodrigues LR (2010) Galacto-oligosaccharides: production, properties, applications, and significance as prebiotics. Compr Rev Food Sci Food Saf 9(5):438–454

    CAS  PubMed  Google Scholar 

  • Tsilingiri K, Rescigno M (2013) Postbiotics: what else? Benefic Microbes 4(1):101–107

    CAS  Google Scholar 

  • Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI (2007) The human microbiome project. Nature 449(7164):804–810

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Loo JA (2004) Prebiotics promote good health: the basis, the potential, and the emerging evidence. J Clin Gastroenterol 38:S70–S75

    PubMed  Google Scholar 

  • Vancassel S, Capuron L, Castanon N (2018) Brain kynurenine and BH4 pathways: relevance to the pathophysiology and treatment of inflammation-driven depressive symptoms. Front Neurosci 12:499

    PubMed  PubMed Central  Google Scholar 

  • Vlantis K, Polykratis A, Welz PS, van Loo G, Pasparakis M, Wullaert A (2016) TLR-independent anti-inflammatory function of intestinal epithelial TRAF6 signalling prevents DSS-induced colitis in mice. Gut 65(6):935–943

    CAS  PubMed  Google Scholar 

  • Vogt NM, Kerby RL, Dill-McFarland KA, Harding SJ, Merluzzi AP, Johnson SC, Carlsson CM, Asthana S, Zetterberg H, Blennow K, Bendlin BB (2017) Gut microbiome alterations in Alzheimer’s disease. Sci Rep 7(1):1–11

    CAS  Google Scholar 

  • Vrese MD, Schrezenmeir AJ (2008) Probiotics, prebiotics, and synbiotics. Food Biotechnol 111:1–66

    Google Scholar 

  • Wegh CA, Geerlings SY, Knol J, Roeselers G, Belzer C (2019) Postbiotics and their potential applications in early life nutrition and beyond. Int J Mol Sci 20(19):4673

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wen L, Duffy A (2017) Factors influencing the gut microbiota, inflammation, and type 2 diabetes. J Nutr 147(7):1468S–1475S

    PubMed  PubMed Central  Google Scholar 

  • Yadav M, Verma MK, Chauhan NS (2018) A review of metabolic potential of human gut microbiome in human nutrition. Arch Microbiol 200(2):203–217

    CAS  PubMed  Google Scholar 

  • Yang X, Zhao Y, He N, Croft KD (2010) Isolation, characterization, and immunological effects of α-galacto-oligosaccharides from a new source, the herb Lycopus lucidus Turcz. J Agric Food Chem 58(14):8253–8258

    CAS  PubMed  Google Scholar 

  • Yoo JY, Groer M, Dutra SVO, Sarkar A, McSkimming DI (2020) Gut microbiota and immune system interactions. Microorganisms 8(10):1587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yue C, Ma B, Zhao Y, Li Q, Li J (2012) Lipopolysaccharide-induced bacterial translocation is intestine site-specific and associates with intestinal mucosal inflammation. Inflammation 35(6):1880–1888

    CAS  PubMed  Google Scholar 

  • Yunes RA, Poluektova EU, Dyachkova MS, Klimina KM, Kovtun AS, Averina OV, Orlova VS, Danilenko VN (2016) GABA production and structure of gadB/gadC genes in lactobacillus and Bifidobacterium strains from human microbiota. Anaerobe 42:197–204

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mori, P., Chauhan, M., Modasiya, I., Kumar, V. (2023). Dietary Modulation of the Nervous and Immune System: Role of Probiotics/Prebiotics/Synbiotics/Postbiotics. In: Kothari, V., Kumar, P., Ray, S. (eds) Probiotics, Prebiotics, Synbiotics, and Postbiotics. Springer, Singapore. https://doi.org/10.1007/978-981-99-1463-0_16

Download citation

Publish with us

Policies and ethics