Skip to main content
Log in

Amperometric bienzymatic biosensor in flow injection analysis system for determination of aspartame in foods

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

An amperometric bienzymatic biosensor was developed for the determination of aspartame in a flow injection analysis (FIA) system, consisting of two enzyme reactor columns packed with immobilized α-chymotrypsin (CHY) and alcohol oxidase (AOX) beads and a hydrogen peroxide electrode, connected in series. The CHY and AOX were separately immobilized on glutaraldehyde (GA)-activated beads through covalent bonding. The biosensor fabrication and operational conditions were optimized. The optimal fabrication conditions were: 2% GA with 120 min activation time; and 250 U/mL CHY and 100 U/mL AOX, with 180 min enzyme immobilization time. The optimal operational conditions were a flow rate of 0.5 mL/min and pH 8.0 at room temperature. The developed biosensor showed linearity over the aspartame concentration range 0.01–1.2 mM, with a detection limit of 0.005 mM. The developed biosensor was satisfactorily applied for detecting aspartame in beverage samples without any excessive pretreatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adányi N, Tóth-Markus M, Szabó EE, Váradi M, Sammartino MP, Tomassetti M, Campanella L. Investigation of organic phase biosensor for measuring glucose in flow injection analysis system. Analytica Chimica Acta. 501: 219-225 (2004)

    Article  Google Scholar 

  • Ásgeirsson B, Bjarnason JB. Structural and kinetic properties of chymotrypsin from Atlantic cod (Gadus morhua). Comparison with bovine chymotrypsin. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry. 99: 327-335 (1991)

    Article  Google Scholar 

  • Bergamo AB, Fracassi da Silva JA, de Jesus DP. Simultaneous determination of aspartame, cyclamate, saccharin and acesulfame-K in soft drinks and tabletop sweetener formulations by capillary electrophoresis with capacitively coupled contactless conductivity detection. Food Chemistry. 124: 1714-1717 (2011)

    Article  CAS  Google Scholar 

  • BSI. BS EN 12856:1999. Foodstuffs - Determination of acesulfame-K, aspartame and saccharin - High performance liquid chromatographic method. British Standards Institution, London, UK (1999)

  • Chen QC, Wang J. Simultaneous determination of artificial sweeteners, preservatives, caffeine, theobromine and theophylline in food and pharmaceutical preparations by ion chromatography. Journal of Chromatography A. 937: 57-64 (2001)

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Zhang Q, Dang Y, Shu G. The effect of glutaraldehyde cross-linking on the enzyme activity of immobilized β-galactosidase on chitosan bead. Advance Journal of Food Science and Technology. 5: 932-935 (2013)

    Article  CAS  Google Scholar 

  • Chou SF. Amperometric biosensor for the determination of the artificial sweetener aspartame with an immobilized bienzyme system. Analyst. 121: 71-73 (1996)

    Article  CAS  Google Scholar 

  • Choudhary AK, Pretorius E. Revisiting the safety of aspartame. Nutrition Reviews. 75: 718-730 (2017)

    Article  PubMed  Google Scholar 

  • Compagnone D, O’Sullivan D, Guilbault GG. Amperometric bienzymic sensor for aspartame. Analyst. 122: 487-490 (1997)

    Article  CAS  PubMed  Google Scholar 

  • Couderc R, Baratti J. Oxidation of methanol by the yeast, Pichia pastoris. Purification and properties of the alcohol oxidase. Agricultural and Biological Chemistry. 44: 2279-2289 (1980)

    CAS  Google Scholar 

  • Czarnecka K, Pilarz A, Rogut A, Maj P, Szymańska J, Olejnik, Ł, Szymański, P. Aspartame—true or false? Narrative review of safety analysis of general use in products. Nutrients. 13: 1957 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fatibello-Filho O, Marcolino LH, Vicente AP. Solid-phase reactor with copper(II) phosphate for flow-injection spectrophotometric determination of aspartame in tabletop sweeteners. Analytica Chimica Acta. 384: 167-174 (1999)

    Article  CAS  Google Scholar 

  • Fatibello-Filho O, Suleiman AA, Guilbault GG, Lubrano GJ. Bienzymatic electrode for the determination of aspartame in dietary products. Analytical Chemistry. 60: 2397-2399 (1988)

    Article  CAS  PubMed  Google Scholar 

  • Fernández M, Villalonga ML, Fragoso A, Cao R, Villalonga R. Stabilization of α-chymotrypsin by modification with β-cyclodextrin derivatives. Biotechnology and Applied Biochemistry. 36: 235-239 (2002)

    Article  PubMed  Google Scholar 

  • Ghous T. Flow injection analysis (FIA). Journal of the Chemical Society of Pakistan. 21: 375-381 (1999)

    CAS  Google Scholar 

  • Göktuğ T, Sezgintürk MK, Dinçkaya E. Glucose oxidase-β-galactosidase hybrid biosensor based on glassy carbon electrode modified with mercury for lactose determination. Analytica Chimica Acta. 551: 51-56 (2005)

    Article  Google Scholar 

  • Hansen EH. Flow injection analysis: a complementary or alternative concept to biosensors. Talanta. 41: 939-948 (1994)

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim ASS, Al-Salamah AA, El-Toni AM, El-Tayeb MA, Elbadawi YB. Immobilization of cyclodextrin glucanotransferase on aminopropyl-functionalized silica-coated superparamagnetic nanoparticles. Electronic Journal of Biotechnology. 16: 6 (2013)

    Article  Google Scholar 

  • Kirgöz ÜA, Odaci D, Timur S, Merkoçi A, Alegret S, Beşün N, Telefoncu A. A biosensor based on graphite epoxy composite electrode for aspartame and ethanol detection. Analytica Chimica Acta. 570: 165-169 (2006)

    Article  PubMed  Google Scholar 

  • Kulkarni AA, Vaidya IS. Flow injection analysis: an overview. Journal of Critical Reviews. 2: 19-24 (2015)

    Google Scholar 

  • Lartigue DJ. Characteristics of free vs. immobilized enzymes. pp. 125-135. In: Immobilized Enzymes for Industrial Reactors. Messing RA (ed). Academic Press, New York, USA (1975)

  • Lim HS, Park SK, Kwak IS, Kim HI, Sung JH, Jang SJ, Byun MY, Kim SH. HPLC-MS/MS analysis of 9 artificial sweeteners in imported foods. Food Science and Biotechnology. 22: 233-240 (2013)

    Article  CAS  Google Scholar 

  • Magnuson BA, Burdock GA, Doull J, Kroes RM, Marsh GM, Pariza MW, Spencer PS, Waddell WJ, Walker R, Williams GM. Aspartame: a safety evaluation based on current use levels, regulations, and toxicological and epidemiological studies. Critical Reviews in Toxicology. 37: 629-727 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Male KB, Luong JHT, Mulchandani A. Determination of aspartame in dietary food products by a FIA biosensor. Biosensors and Bioelectronics. 6: 117-123 (1991)

    Article  CAS  Google Scholar 

  • Male KB, Luong JHT, Gibbs B, Konishi Y. An improved FIA biosensor for the determination of aspartame in dietary food products. Applied Biochemistry and Biotechnology. 38: 189-201 (1993)

    Article  CAS  PubMed  Google Scholar 

  • McGrath TF, Elliott CT, Fodey TL. Biosensors for the analysis of microbiological and chemical contaminants in food. Analytical and Bioanalytical Chemistry. 403: 75-92 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Mulchandani A, Pan S, Chen W. Fiber-optic enzyme biosensor for direct determination of organophosphate nerve agents. Biotechnology Progress. 15: 130-134 (1999)

    Article  CAS  PubMed  Google Scholar 

  • Nwagu TN, Okolo B, Aoyagi H. Immobilization of raw starch saccharifying amylase on glutaraldehyde activated chitin flakes increases the enzyme operation range. Bioresource Technology Reports. 13: 100645 (2021)

    Article  CAS  Google Scholar 

  • O’Donnell K. Aspartame, neotame and advantame. pp. 117-136. In: Sweeteners and sugar alternatives in food technology. O’Donnell K, Kearsley WM (ed). John Wiley & Sons, Ltd, Chichester, UK (2012)

  • Ortega F, Domínguez E, Burestedt E, Emnéus J, Gorton L, Marko-Varga G. Phenol oxidase-based biosensors as selective detection units in column liquid chromatography for the determination of phenolic compounds. Journal of Chromatography A. 675: 65-78 (1994)

    Article  CAS  Google Scholar 

  • Pan C, Ding R, Dong L, Wang J, Hu Y. Horseradish peroxidase-carrying electrospun nonwoven fabrics for the treatment of o-methoxyphenol. Journal of Nanomaterials. 2015: 616879 (2015)

    Article  Google Scholar 

  • Peña RM, Lima JLFC, Saraiva MLMFS. Sequential injection analysis-based flow system for the enzymatic determination of aspartame. Analytica Chimica Acta. 514: 37-43 (2004)

    Article  Google Scholar 

  • Polan V, Soukup J, Vytřas K. Screen-printed carbon electrodes modified by rhodium dioxide and glucose dehydrogenase. Enzyme Research. 2010: 324184 (2010)

    Article  Google Scholar 

  • Radulescu MC, Bucur B, Bucur MP, Radu G. Bienzymatic biosensor for rapid detection of aspartame by flow injection analysis. Sensors. 14: 1028-1038 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renneberg R, Riedel K, Scheller F. Microbial sensor for aspartame. Applied Microbiology and Biotechnology. 21: 180-181 (1985)

    Article  CAS  Google Scholar 

  • Rye C, Wise R, Jurukovski V, DeSaix J, Choi J, Avissar Y. Biology. OpenStax, Houston, USA (2016)

  • Sassolas A, Blum LJ, Leca-Bouvier BD. Immobilization strategies to develop enzymatic biosensors. Biotechnology Advances. 30: 489-511 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Singh RS, Singh RP, Kennedy JF. Immobilization of yeast inulinase on chitosan beads for the hydrolysis of inulin in a batch system. International Journal of Biological Macromolecules. 95: 87-93 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Smith VJ, Green RA, Hopkins TR. Determination of aspartame in beverages using an alcohol oxidase enzyme electrode. Journal - Association of Official Analytical Chemists. 72: 30-33 (1989)

    CAS  PubMed  Google Scholar 

  • Trandafir I, Nour V, Ionic ME. Development and validation of an HPLC method for simultaneous quantification of acesulfame-K, saccharin, aspartame, caffeine and benzoic acid in cola soft drinks. Scientific Study & Research. 185-194 (2009)

  • Üstün Özgür M, Kasapoğlu M. Development and validation of a simple ultra fast liquid chromatographic method for the simultaneous determination of aspartame, acesulfame-k, caffeine and sodium benzoate in dietic soft drinks. Journal of Analytical Chemistry. 74: 555-564 (2019)

    Article  Google Scholar 

  • Villarta RL, Suleiman AA, Guilbault GG. Amperometric enzyme electrode for the determination of aspartame in diet food. Microchemical Journal. 48: 60-64 (1993)

    Article  CAS  Google Scholar 

  • Wilson K. Enzymes. pp. 581-624. In: Principles and Techniques of Biochemistry and Molecular Biology. Wilson K, Walker J (ed). Cambridge University Press, Cambridge, UK (2010)

  • Wong DE, Senecal KJ, Goddard JM. Immobilization of chymotrypsin on hierarchical nylon 6,6 nanofiber improves enzyme performance. Colloids and Surfaces B: Biointerfaces. 154: 270-278 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Yildiz HB, Toppare L. Biosensing approach for alcohol determination using immobilized alcohol oxidase. Biosensors and Bioelectronics. 21: 2306-2310 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Yılmaz Ö, Demirkol DO, Gülcemal S, Kılınç A, Timur S, Çetinkaya B. Chitosan-ferrocene film as a platform for flow injection analysis applications of glucose oxidase and Gluconobacter oxydans biosensors. Colloids and Surfaces B: Biointerfaces. 100: 62-68 (2012)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by Kasetsart University, Bangkok, Thailand through the Graduate School Fellowship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saipin Thanachasai.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tangtawewipat, T., Thanachasai, S. Amperometric bienzymatic biosensor in flow injection analysis system for determination of aspartame in foods. Food Sci Biotechnol 33, 343–354 (2024). https://doi.org/10.1007/s10068-023-01347-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-023-01347-5

Keywords

Navigation