Skip to main content
Log in

A low-cost, fast, disposable and sensitive biosensor study: flow injection analysis of glucose at poly-methylene blue-modified pencil graphite electrode

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this work, firstly methylene blue (MB) was electropolymerized onto pencil graphite electrode (PGE) surface for the electrocatalytic oxidation of NADH. Cyclic voltammograms show that oxidation potential of NADH at Poly-MB/PGE shifted to negative direction about 300 mV compared with bare PGE. These results indicate that Poly-MB/PGE exhibits a good electrocatalytic activity toward NADH oxidation. Then, a glucose biosensor study was performed based on the determination of enzymatically generated NADH by glucose dehydrogenase (GDH) which immobilized onto Poly-MB/PGE using glutaraldehyde cross-linking procedure. The biosensing of glucose in flow injection analysis (FIA) system was performed at GDH/Poly-MB/PGE for the first time. The electrocatalytic oxidation currents of enzymatically produced NADH obtained from FI amperometric current–time curves recorded at + 200 mV and in phosphate buffer solution at pH 7.0 containing 1.0 M KCl were linearly related to the concentration of glucose. Linear calibration plots are obtained in the concentration range from 0.01 to 1.0 mM. The limit of detection (LOD) was found to be 4.0 µM. A fast, sensitive, low-cost and disposable glucose biosensor was constructed in FIA system using GDH/Poly-MB/PGE; therefore, it might provide a new perspective for the fabrication of biosensor of other compounds such as glutamate, lactate and alcohol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. I. Katakis, E. Dominguez, Catalytic electrooxidation of NADH for dehydrogenase amperometric biosensors. Microchim. Acta 126, 11–32 (1997)

    Article  CAS  Google Scholar 

  2. M.J. Lobo, A.J. Miranda, P. Tunon, Amperometric biosensors based on NAD(P)-dependent dehydrogenase enzymes. Electroanalysis 9, 191–202 (1997)

    Article  CAS  Google Scholar 

  3. G. Hughes, R.M. Pemberton, P.R. Fielden, J.P. Hart, The design, development and application of electrochemical glutamate biosensor. Trends Anal. Chem. 79, 106–113 (2016)

    Article  CAS  Google Scholar 

  4. A.M. Azevedo, D.M.F. Prazeres, J.M.S. Cabral, L.P. Fonseca, Ethanol biosensors based on alcohol oxidase. Biosens. Bioelectron. 21, 235–247 (2005)

    Article  CAS  Google Scholar 

  5. N.J. Ronkainen, H.B. Halsall, W.R. Heineman, Electrochemical biosensors. Chem. Soc. Rev. 39, 1747–1763 (2010)

    Article  CAS  Google Scholar 

  6. A.P.F. Turner, Biosensors: sense and sensibility. Chem. Soc. Rev. 42, 3184–3196 (2013)

    Article  CAS  Google Scholar 

  7. T. Hoshino, S.I. Sekiguchi, H. Muguruma, Amperometric biosensor based on multilayer containing carbon nanotube, plasma-polymerized film, electron transfer mediator phenothiazine, and glucose dehydrogenase. Bioelectrochemistry 84, 1–5 (2012)

    Article  CAS  Google Scholar 

  8. F.S. Saleh, L. Mao, T. Ohsaka, Development of a dehydrogenase-based glucose anode using a molecular assembly composed of nile blue and functionalized SWCNTs and its applications to a glucose sensor and glucose/O2 biofuel cell. Sens. Actuator B. 152, 130–135 (2011)

    Article  CAS  Google Scholar 

  9. F. Jafari, A. Salimi, A. Navaee, Electrochemical and photoelectrochemical sensing of dihydronicotinamide adenine dinucleotide and glucose based on noncovalently functionalized reduced graphene oxide-cadmium sulfide quantum dots/poly-nile blue nanocomposite. Electroanalysis 26, 1782–1793 (2014)

    Article  CAS  Google Scholar 

  10. M. Labib, E.H. Sargent, S.O. Kelley, Electrochemical methods for the analysis of clinically relevant biomolecules. Chem. Rev. 116, 9001–9090 (2016)

    Article  CAS  Google Scholar 

  11. R.E. Özel, A. Hayati, S. Andreescu, Recent developments in electrochemical sensors for the detection of neurotransmitters for applications in biomedicine. Anal. Lett. 48, 1044–1049 (2015)

    Article  Google Scholar 

  12. A.A. Ensafi, H. Karimi-Maleh, Modified multiwall carbon nanotubes paste electrode as a sensor for simultaneous determination of 6-thioguanine and folic acid using ferrocenedicarboxylic acid as a mediator. J. Electroanal. Chem. 640, 75–83 (2010)

    Article  CAS  Google Scholar 

  13. A. Weltin, J. Kieninger, G.A. Urban, Microfabricated, amperometric, enzyme-based biosensors for in vivo applications. Anal. Bioanal. Chem. 408, 4503–4521 (2016)

    Article  CAS  Google Scholar 

  14. M.I. Prodromidis, M.I. Karayannis, Enzyme based amperometric biosensors for food analysis. Electroanalysis 14, 241–261 (2002)

    Article  CAS  Google Scholar 

  15. P. Du, P. Wu, C. Cai, A glucose biosensor based on electrocatalytic oxidation of NADPH at single-walled carbon nanotubes functionalized with poly(nile blue A). J. Electroanal. Chem. 624, 21–26 (2008)

    Article  CAS  Google Scholar 

  16. D.W. Yang, H.H. Liu, Poly(brilliant cresyl blue)-carbonnanotube modified electrodes for determination of NADH and fabrication of ethanol dehydrogenase-based biosensor. Biosens. Bioelectron. 25, 733–738 (2009)

    Article  Google Scholar 

  17. H. Teymourian, A. Salimi, R. Hallaj, Low potential detection of NADH based on Fe3O4 nanoparticles/multiwalled carbon nanotubes composite: fabrication of integrated dehydrogenase-based lactate biosensor. Biosens. Bioelectron. 33, 60–68 (2012)

    Article  CAS  Google Scholar 

  18. D.G. Dilgin, H.I. Gokçel, Photoelectrochemical glucose biosensor in flow injection analysis system based on glucose dehydrogenase immobilized on poly-hematoxylin modified glassy carbon electrode. Anal. Methods 7, 990–999 (2015)

    Article  CAS  Google Scholar 

  19. B. Ertek, C. Akgul, Y. Dilgin, Photoelectrochemical glucose biosensor based on a dehydrogenase enzyme and NAD+/NADH redox couple using a quantum dot modified pencil graphite electrode. RSC Adv. 6, 20058–20066 (2016)

    Article  CAS  Google Scholar 

  20. M. Piano, S. Serban, N. Biddle, R. Pittson, G.A. Drago, J.P. Hart, A flow injection system, comprising a biosensor based on a screen-printed carbon electrode containing Meldola’s Blue-Reinecke salt coated with glucose dehydrogenase, for the measurement of glucose. Anal. Biochem. 396, 269–274 (2010)

    Article  CAS  Google Scholar 

  21. J. Zhu, X.Y. Wu, D. Shan, P.X. Yuan, X.J. Zhang, Sensitive electrochemical detection of NADH and ethanol at low potential based on pyrocatechol violet electrode posited on single walled carbon nanotubes-modified pencil graphite electrode. Talanta 130, 96–102 (2014)

    Article  CAS  Google Scholar 

  22. L. Gorton, E. Dominguez, Bioelectrochemistry, in Electrochemistry of NAD(P) + /NAD(P)H” Encyclopaedia of Electrochemistry, vol. 9, ed. by G.S. Wilson, A.J. Bard, M. Stratmann (Wiley-VCH, Weinheim, 2002)

    Google Scholar 

  23. S.A. Kumar, S.M. Chen, Electroanalysis of NADH using conducting and redox active polymer/carbon nanotubes modified electrodes-A review. Sensors 8, 739–766 (2008)

    Article  CAS  Google Scholar 

  24. J. Wang, A.N. Kawde, E. Sahlin, Renewable pencil electrodes for highly sensitive stripping potentiometric measurements of DNA and RNA. Analyst 125, 5–7 (2000)

    Article  CAS  Google Scholar 

  25. A.N. Kawde, N. Baig, M. Sajid, Graphite pencil electrodes as electrochemical sensors for environmental analysis: a review of features, developments, and applications. RSC Adv. 6, 91325–91340 (2016)

    Article  CAS  Google Scholar 

  26. I.G. David, D.E. Popa, M. Buleandra, Pencil graphite electrodes: a versatile tool in electroanalysis. J. Anal. Method Chem. 2017, 1–22 (2017)

    Article  Google Scholar 

  27. N. Jadon, R. Jain, A. Pandey, Electrochemical analysis of amlodipine in some pharmaceutical formulations and biological fluid using disposable pencil graphite electrode. J. Electroanal. Chem. 788, 7–13 (2017)

    Article  CAS  Google Scholar 

  28. Ö. Sağlam, B. Kızılkaya, H. Uysal, Y. Dilgin, Biosensing of glucose in flow injection analysis system based on glucose oxidase-quantum dot modified pencil graphite electrode. Talanta 147, 315–321 (2016)

    Article  Google Scholar 

  29. Y. Dilgin, B. Kızılkaya, D.G. Dilgin, H.I. Gökcel, L. Gorton, Electrocatalytic oxidation of NADH using a pencil graphite electrode modified with quercetin. Colloid Surf. B Biointerfaces 102, 816–821 (2013)

    Article  CAS  Google Scholar 

  30. Y. Dilgin, B. Ertek, B. Kızılkaya, D.G. Dilgin, H.I. Gökçel, Electrocatalytic oxidation of NADH using a pencil graphite electrode modified with hematoxylin. Sci. Adv. Mater. 4, 920–927 (2012)

    Article  CAS  Google Scholar 

  31. Y. Dilgin, D.G. Dilgin, Z. Dursun, H.I. Gökçel, D. Giligor, B. Bayrak, B. Ertek, Photoelectrocatalytic determination of NADH in a flow injection system with electropolymerized methylene blue. Electrochim. Acta 56, 1138–1143 (2011)

    Article  CAS  Google Scholar 

  32. D.C. Geraldine, A. Jaafar, S. Hamidah, A.R. Samsulida, A.N. Ellina, Electrooxidative polymerization of methylene blue on screen printed carbon paste electrode and its application in NADH determination. Sens. Lett. 9, 1592–1597 (2011)

    Article  Google Scholar 

  33. R.C. Pena, M. Bertotti, C.M.A. Brett, Methylene blue/multiwall carbon nanotube modified electrode for the amperometric determination of hydrogen peroxide. Electronalysis 23, 2290–2296 (2011)

    Article  CAS  Google Scholar 

  34. E. Topcu, K. Dagci, M. Alanyalioglu, Free-standing graphene/poly(methylene blue)/AgNPs composite caper for electrochemical sensing of NADH. Electroanalysis 28, 2058–2069 (2016)

    Article  CAS  Google Scholar 

  35. S. Yang, G. Li, J. Zhao, H. Zhu, L. Qu, Electrochemical preparation of Ag nanoparticles/poly(methylene blue) functionalized graphene nanocomposite film modified electrode for sensitive determination of rutin. J. Electroanal. Chem. 717–718, 225–230 (2014)

    Article  Google Scholar 

  36. Y.L. Zeng, Y.F. Huang, J.H. Jiang, X.B. Zhang, C.R. Tang, G.L. Shen, R.Q. Yu, Functionalization of multi-walled carbon nanotubes with poly(amidoamine) dendrimer for mediator-free glucose biosensor. Electrochem. Commun. 9, 185–190 (2007)

    Article  Google Scholar 

  37. D.M. Kim, M.Y. Kim, S.S. Reddy, J. Cho, C.H. Cho, S. Jung, Y.B. Shim, Electron-transfer mediator for a NAD-glucose dehydrogenase-based glucose sensor. Anal. Chem. 85, 11643–11649 (2013)

    Article  CAS  Google Scholar 

  38. F. Pariente, F. Tobalina, G. Moreno, L. Hernandez, E. Lorenzo, H.D. Abruna, Mechanistic studies of the electrocatalytic oxidation of NADH and ascorbate at glassy carbon electrodes modified with electrodeposited films derived from 3,4-dihydroxybenzaldehyde. Anal. Chem. 69, 4065–4075 (1997)

    Article  CAS  Google Scholar 

  39. H.M. Özcan, M.K. Sezgintürk, Detection of parathyroid hormone using an electrochemical impedance biosensor based on PAMAM dendrimers. Biotechnol. Prog. 31, 815–822 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Çanakkale Onsekiz Mart University (Project No 2012/58).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didem Giray Dilgin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dilgin, D.G., Ertek, B. & Dilgin, Y. A low-cost, fast, disposable and sensitive biosensor study: flow injection analysis of glucose at poly-methylene blue-modified pencil graphite electrode. J IRAN CHEM SOC 15, 1355–1363 (2018). https://doi.org/10.1007/s13738-018-1335-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-018-1335-x

Keywords

Navigation