Skip to main content
Log in

Untargeted metabolite profiling of serum in rats exposed to pyrraline

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Pyrraline, one of advanced glycation end-products, is formed in advanced Maillard reactions. It was reported that the presence of pyrraline was tested to be associated with nephropathy and diabetes. Pyrraline might result in potential health risks because many modern diets are heat processed. In the study, an integrated metabolomics by ultra-high-performance liquid chromatography with mass spectrometry was used to evaluate the effects of pyrraline on metabolism in rats. Thirty-two metabolites were identified as differential metabolites. Linolenic acid metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, arachidonic acid metabolism, tyrosine metabolism and glycerophospholipid metabolism were the main perturbed networks in this pathological process. Differential metabolites and metabolic pathways we found give new insights into studying the toxic molecular mechanisms of pyrraline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aksenov AA, da Silva R, Knight R, Lopes NP, Dorrestein PC. Global chemical analysis of biology by mass spectrometry. Nature Reviews Chemistry. 1: 0054 (2017)

    Article  CAS  Google Scholar 

  • Aso Y, Takanashi K, Sekine K, Yoshida N, Takebayashi K, Yoshihara K, Inukai T. Dissociation between urinary pyrraline and pentosidine concentrations in diabetic patients with advanced nephropathy. Journal of Laboratory and Clinical Medicine. 144: 92-99 (2004)

    Article  CAS  PubMed  Google Scholar 

  • Bereketoglu C, Pradhan A. Comparative transcriptional analysis of methylparaben and propylparaben in zebrafish. Science of the Total Environment. 671: 129-139 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Chang HY, Colby SM, Du XX, Gomez JD, Helf MJ, Kechris K, Kirkpatrick CR, Li SZ, Patti GJ, Renslow RS, Subramaniam S, Verma M , Xia JG, Young JD. A Practical guide to metabolomics software development. Analytical Chemistry. 93: 1912-1923 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drogan D, Dunn WB, Lin WC, Buijsse B, Schulze MB, Langenberg C, Brown M, Floegel A, Dietrich S, Rolandsson O, Wedge DC, Goodacre R, Forouhi NG, Sharp SJ, Spranger J, Wareham NJ, Boeing H. Untargeted metabolic profiling identifies altered serum metabolites of type 2 diabetes mellitus in a prospective, nested case control study. Clinical Chemistry. 61: 487-497 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Goodman RP, Markhard AL, Shah HD, Sharma R, Skinner OS, Clish CB, Deik A, Patgiri A, Hsu YHH, Masia R, Noh HL, Suk S, Goldberger O, Hirschhorn JN, Yellen G, Kim JK, Mootha VK. Hepatic NADH reductive stress underlies common variation in metabolic traits. Nature. 583: 122-127 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo C, Ma JF, Zhong QH, Zhao MY, Hu TX, Chen T, Qiu LX, Wen LP. Curcumin improves alcoholic fatty liver by inhibiting fatty acid biosynthesis. Toxicology and Applied Pharmacology. 328: 1-9 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Hao CM, Breyer MD. Physiologic and pathophysiologic roles of lipid mediators in the kidney. Kidney International. 71: 1105-1115 (2007)

    Article  CAS  PubMed  Google Scholar 

  • He Z, Zhang HN, Song YY, Yang Z, Cai ZW. Exposure to ambient fine particulate matter impedes the function of spleen in the mouse metabolism of high-fat diet. Journal of Hazardous Materials. 423: 127129 (2022)

    Article  CAS  PubMed  Google Scholar 

  • Holmes E, Wilson ID, Nicholson JK. Metabolic phenotyping in health and disease. Cell. 134: 714-717 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Hu CQ, Li R, Wang JH, Liu YL, Wang J, Sun BG. Untargeted metabolite profiling of liver in mice exposed to 2-methylfuran. Journal of Food Science. 86: 242-250 (2021)

    Article  CAS  PubMed  Google Scholar 

  • Hu CQ, Lin SH, Cai ZW. Fatty acid profiles reveal toxic responses in adipose tissue of C57BL/6J mice exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Analytical Methods. 6: 8207-8211 (2014)

    Article  CAS  Google Scholar 

  • Hu CQ, Zhang Y, Liu GR, Liu YL, Wang J, Sun BG. Untargeted metabolite profiling of adipose tissue in hyperlipidemia rats exposed to hawthorn ethanol extracts. Journal of Food Science. 84: 717-725 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Igarashi K, Kashiwagi K. Use of polyamine metabolites as markers for stroke and renal failure. Methods in Molecular Biology. 720: 395-408 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Jiang YC, Li YF, Zhou L, Zhang DP. Comparative metabolomics unveils molecular changes and metabolic networks of syringin against hepatitis B mice by untargeted mass spectrometry. RSC Advances. 10: 461-473 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson CH, Dejea CM, Edler D, Hoang LT, Santidrian AF, Felding BH, Ivanisevic J, Cho K, Wick EC, Hechenbleikner EM, Uritboonthai W, Goetz L, Casero RA, Pardoll DM, White JR, Patti GJ, Sears CL, Siuzdak G. Metabolism links bacterial biofilms and colon carcinogenesis. Cell Metabolism. 21: 891-897 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon HN, Phan HD, Xu WJ, Ko YJ, Park S. Application of a smartphone metabolomics platform to the authentication of Schisandra sinensis. Phytochemical Analysis. 27: 199-205 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Li H, Wang M, Liang QD, Jin SN, Su XJ, Jiang YQ, Pan XY, Zhou YQ, Peng Y, Zhang B, Zhou AF, Zhang YM, Chen Z, Cao JX, Zhang HL, Xia W, Zheng TZ, Cai ZW, Li YY, Xu SQ. Urinary metabolomics revealed arsenic exposure related to metabolic alterations in general Chinese pregnant women. Journal of Chromatography A. 1479: 145-152 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Li H, Yu SJ. Review of pentosidine and pyrraline in food and chemical models: formation, potential risks and determination. Journal of the Science of Food and Agriculture. 98: 3225-3233 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Li TT, Xu S, Bi JL, Huang ST, Fan BL, Qian CQ. Metabolomics study of polysaccharide extracts from Polygonatum sibiricum in mice based on H-1 NMR technology. Journal of the Science of Food and Agriculture. 100: 4627-4635 (2020)

    Article  CAS  PubMed  Google Scholar 

  • Liang YH, Tang CL, Lu SY, Cheng B, Wu F, Chen ZN, Song F, Ruan JX, Zhang HY, Song H, Zheng H, Su ZH. Serum metabonomics study of the hepatoprotective effect of Corydalis saxicola Bunting on carbon tetrachloride-induced acute hepatotoxicity in rats by H-1 NMR analysis. Journal of Pharmaceutical and Biomedical Analysis. 129: 70-79 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Liu HL, Mu L, Chen XM, Wang J, Wang S, Sun BG. Core-shell metal-organic frameworks/molecularly imprinted nanoparticles as absorbents for the detection of pyrraline in milk and milk powder. Journal of Agricultural and Food Chemistry. 65: 986-992 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Pareek V, Tian H, Winograd N, Benkovic SJ. Metabolomics and mass spectrometry imaging reveal channeled de novo purine synthesis in cells. Science. 368: 283-290 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poli G, Biasi F, Leonarduzzi G. Oxysterols in the pathogenesis of major chronic diseases. Redox Biology. 1: 125-130 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quansah R, Armah FA, Essumang DK, Luginaah I, Clarke E, Marfoh K, Cobbina SJ, Nketiah-Amponsah E, Namujju PB, Obiri S, Dzodzomenyo M. Association of arsenic with adverse pregnancy outcomes/infant mortality: a systematic review and meta-analysis. Environmental Health Perspectives. 123: 412-421 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  • RoyChoudhury S, Mishra BP, Khan T, Chattopadhayay R, Lodh I, Ray CD, Bose G, Sarkar HS, Srivastava S, Joshi MV, Chakravarty B, Chaudhury K. Serum metabolomics of Indian women with polycystic ovary syndrome using H-1 NMR coupled with a pattern recognition approach. Molecular Biosystems. 12: 3407-3416 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Sas KM, Karnovsky A, Michailidis G, Pennathur S. Metabolomics and diabetes: analytical and computational approaches. Diabetes. 64: 718-732 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma C, Kaur A, Thind SS, Singh B, Raina S. Advanced glycation end-products (AGEs): an emerging concern for processed food industries. Journal of Food Science and Technology. 52: 7561-7576 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Nguyen C. Toxicity of the AGEs generated from the Maillard reaction on the relationship of food-AGEs and biological-AGEs. Molecular Nutrition and Food Research. 50: 1140-1149 (2006)

    Article  CAS  Google Scholar 

  • Wellner A, Huettl C, Henle T. Formation of Maillard Reaction Products during Heat Treatment of Carrots. Journal of Agricultural and Food Chemistry. 59: 7992-7998 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proceedings of the National Academy of Sciences of the United States of America. 106: 3698-3703 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng T, Liang YS, Chen JY, Cao GD, Yang Z, Zhao XC, Tian JL, Xin X, Lei B, Cai ZW. Urinary metabolic characterization with nephrotoxicity for residents under cadmium exposure. Environment International. 154: 106646 (2021)

    Article  CAS  PubMed  Google Scholar 

  • Zhao DS, Jiang LL, Fan YX, Wang LL, Li ZQ, Shi W, Li P, Li HJ. Investigation of Dioscorea bulbifera rhizome-induced hepatotoxicity in rats by a multisample integrated metabolomics approach. Chemical Research in Toxicology. 30: 1865-1873 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Zhao HZ, Zheng YY, Zhu L, Xiang L, Zhou YQ, Li JF, Fang J, Xu SQ, Xia W, Cai ZW. Paraben exposure related to purine metabolism and other pathways revealed by mass spectrometry-based metabolomics. Environmental Science Technology. 54: 3447-3454 (2020)

    Article  CAS  PubMed  Google Scholar 

  • Zhao YY, Vaziri ND, Lin RC. Lipidomics: new insight into kidney disease. Advances in Clinical Chemistry. 68: 153-175 (2015)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 31901808, 31972111, 31871772), Beijing Municipal Education Commission common project (KM201810011012), Beijing Excellent Talents Funding for Youth Scientist Innovation Team (201600026833TD01) and Project of High-level Teacher in Beijing Municipal Universities (IDHT20180506).

Author information

Authors and Affiliations

Authors

Contributions

CH: Investigation, Methodology, Writing-original draft, Conceptualization. JW: Methodology, Formal analysis, Visualization. FQ: Conceptualization. YL: Conceptualization. FZ: Conceptualization. JW: Conceptualization, Supervision, Funding acquisition. BS: Conceptualization. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jing Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

The animal care and all experimental processes were conducted according to the European Community guidelines for using experimental animals. The study protocol was agreed by the Animal Care and Use Committee of Peking University Health Science Center. This article does not contain any studies with human participants performed by any of the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 45 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, C., Wang, J., Qi, F. et al. Untargeted metabolite profiling of serum in rats exposed to pyrraline. Food Sci Biotechnol 32, 1541–1549 (2023). https://doi.org/10.1007/s10068-023-01256-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-023-01256-7

Keywords

Navigation