Skip to main content

Advertisement

Log in

Untargeted metabolomics reveals alterations in metabolites of lipid metabolism and immune pathways in the serum of rats after long-term oral administration of Amalaki rasayana

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Amalaki rasayana, a traditional preparation, is widely used by Ayurvedic physicians for the treatment of inflammatory conditions, cardiovascular diseases, and cancer. Metabolic alterations induced by Amalaki rasayana intervention are unknown. We investigated the modulations in serum metabolomic profiles in Wistar rats following long-term oral administration of Amalaki rasayana. Global metabolic profiling was performed of the serum of rats administered with either Amalaki rasayana (AR) or ghee + honey (GH) for 18 months and control animals which were left untreated. Amalaki rasayana components were confirmed from AR extract using HR-LCMS analysis. Significant reductions in prostaglandin J2, 11-dehydrothromboxane B2, and higher levels of reduced glutathione and glycitein metabolites were observed in the serum of AR administered rats compared to the control groups. Eleven different metabolites classified as phospholipids, glycerophospholipids, glucoside derivatives, organic acids, and glycosphingolipid were exclusively observed in the AR administered rats. Pathway analysis suggests that altered metabolites in AR administered rats are those associated with different biochemical pathways of arachidonic acid metabolism, fatty acid metabolism, leukotriene metabolism, G-protein mediated events, phospholipid metabolism, and the immune system. Targeted metabolomics confirmed the presence of gallic acid, ellagic acid, and arachidonic acid components in the AR extract. The known activities of these components can be correlated with the altered metabolic profile following long-term AR administration. AR also activates IGF1R-Akt-Foxo3 signaling axis in heart tissues of rats administered with AR. Our study identifies AR components that induce alterations in lipid metabolism and immune pathways in animals which consume AR for an extended period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Metabolomic data were submitted to the software MetaboLights and can be accessed by anyone using the study ID- MTBLS867.

Abbreviations

AR:

Amalaki rasayana

GH:

Ghee + Honey

HR-LCMS:

High resolution liquid chromatography mass spectrometry

UPLC:

Ultra-performance liquid chromatography

Q-TOF:

Quadrupole-time of flight

HILIC:

Hydrophilic interaction chromatography

RPLC:

Reversed-phase liquid chromatography

ESI:

Electrospray ionization

MW:

Molecular weight

QC:

Quality control

RT:

Retention time

PCA:

Principal component analysis

HMDB:

Human metabolome database

RP-Pos:

Reverse phase-positive

RP-Neg:

Reverse phase-negative

LysoPC:

Lysophosphatidylcholine

12-HHT:

12-Hydroxyheptadecatrienoic acid

CE:

Ceramide

LPA:

Lysophosphatidic acid

PS:

Phosphatidylserine

PGP:

Phosphatidylglycerolphosphate

PPARɣ:

Peroxisome proliferator-activated receptor gamma

GA:

Gallic acid

EA:

Ellagic acid

AA:

Arachidonic acid

TXB2:

11-Dehydrothromboxane B2

GSH:

Glutathione

PDGF:

Platelet-derived growth factor

SMC:

Smooth muscle cell

LTB4:

Leukotriene B4

References

  1. Dwivedi V, Anandan EM, Mony RS et al (2012) In vivo effects of traditional ayurvedic formulations in Drosophila melanogaster model relate with therapeutic applications. PLoS ONE 7:e37113. https://doi.org/10.1371/journal.pone.0037113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dwivedi V, Tripathi BK, Mutsuddi M, Lakhotia SC (2013) Ayurvedic amalaki rasayana and rasa-sindoor suppress neurodegeneration in fly models of Huntington’s and Alzheimer’s diseases. Curr Sci 105:1711–1723

    Google Scholar 

  3. Govindarajan R, Vijayakumar M, Pushpangadan P (2005) Antioxidant approach to disease management and the role of “Rasayana” herbs of Ayurveda. J Ethnopharmacol 99:165–178

    Article  CAS  Google Scholar 

  4. Vishwanatha U, Guruprasad KP, Gopinath PM et al (2016) Effect of amalaki rasayana on DNA damage and repair in randomized aged human individuals. J Ethnopharmacol 191:387–397. https://doi.org/10.1016/j.jep.2016.06.062

    Article  CAS  PubMed  Google Scholar 

  5. Kumar V, Aneesh KA, Kshemada K et al (2017) Amalaki rasayana, a traditional Indian drug enhances cardiac mitochondrial and contractile functions and improves cardiac function in rats with hypertrophy. Sci Rep. https://doi.org/10.1038/s41598-017-09225-x

    Article  PubMed  PubMed Central  Google Scholar 

  6. Keith CT, Borisy AA, Stockwell BR (2005) Multicomponent therapeutics for networked systems. Nat Rev Drug Discov 4:71–78. https://doi.org/10.1038/nrd1609

    Article  CAS  PubMed  Google Scholar 

  7. Li XJ, Zhang HY (2008) Synergy in natural medicines: implications for drug discovery. Trends Pharmacol Sci 29:331–332

    Article  CAS  Google Scholar 

  8. Chu H, Zhang AH, Han Y, Wang X (2015) Metabolomics and its potential in drug discovery and development from TCM. World J Tradit Chin Med 1:26–32

    Article  Google Scholar 

  9. Kim OY, Lee JH, Sweeney G (2013) Metabolomic profiling as a useful tool for diagnosis and treatment of chronic disease: focus on obesity, diabetes and cardiovascular diseases. Expert Rev Cardiovasc Ther 11:61–68

    Article  CAS  Google Scholar 

  10. Peterson CT, Lucas J, John-Williams LS et al (2016) Identification of altered metabolomic profiles following a panchakarma-based ayurvedic intervention in healthy subjects: the self-directed biological transformation initiative (SBTI). Sci Rep. https://doi.org/10.1038/srep32609

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dumas ME (2012) Metabolome 2.0: quantitative genetics and network biology of metabolic phenotypes. Mol BioSyst 8:2494–2502

    Article  CAS  Google Scholar 

  12. Vinayavekhin N, Homan EA, Saghatelian A (2010) Exploring disease through metabolomics. ACS Chem Biol 5:91–103

    Article  CAS  Google Scholar 

  13. Wang X, Zhang A, Zhou X et al (2016) An integrated chinmedomics strategy for discovery of effective constituents from traditional herbal medicine. Sci Rep. https://doi.org/10.1038/srep18997

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sharma PV (1994) Charaka Samhita-Sanskrit with English Translation. Chaukhambha Orientalia

  15. Singh RH (1998) The holistic principles of ayurvedic medicine. Chaukhamba Sanskrit Pratishthan, New Delhi

    Google Scholar 

  16. Ministry for Health and Family Welfare (2010) The ayurvedic pharmacopoeia of India. 2. Govt. of India, Ministry of Health and Family Welfare, Dept. of ISM & H, New Delhi, p 171

    Google Scholar 

  17. Rajak S, Banerjee SK, Sood S et al (2004) Emblica officinalis causes myocardial adaptation and protects against oxidative stress in ischemic-reperfusion injury in rats. Phyther Res 18:54–60. https://doi.org/10.1002/ptr.1367

    Article  CAS  Google Scholar 

  18. Dunn WB, Broadhurst D, Begley P et al (2011) Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc 6:1060–1083. https://doi.org/10.1038/nprot.2011.335

    Article  CAS  PubMed  Google Scholar 

  19. Salek RM, Steinbeck C, Viant MR et al (2013) The role of reporting standards for metabolite annotation and identification in metabolomic studies. Gigascience. https://doi.org/10.1186/2047-217X-2-13

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kamburov A, Cavill R, Ebbels TMD et al (2011) Integrated pathway-level analysis of transcriptomics and metabolomics data with IMPaLA. Bioinformatics 27:2917–2918. https://doi.org/10.1093/bioinformatics/btr499

    Article  CAS  PubMed  Google Scholar 

  21. Chong J, Soufan O, Li C et al (2018) MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res 46:W486–W494. https://doi.org/10.1093/nar/gky310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee WS, Kim J (2018) Insulin-like growth factor-1 signaling in cardiac aging. Biochim Biophys Acta 1864:1931–1938

    Article  CAS  Google Scholar 

  23. Troncoso R, Ibarra C, Vicencio JM et al (2014) New insights into IGF-1 signaling in the heart. Trends Endocrinol Metab 25:128–137

    Article  CAS  Google Scholar 

  24. Kelavkar UP (2004) Cohen C 15-lipoxygenase-1 expression upregulates and activates insulin-like growth factor-1 receptor in prostate cancer cells. Neoplasia 6:41–52. https://doi.org/10.1016/s1476-5586(04)80052-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Okano T, Xuan S, Kelley MW (2011) Insulin-like growth factor signaling regulates the timing of sensory cell differentiation in the mouse cochlea. J Neurosci 31:18104–18118. https://doi.org/10.1523/jneurosci.3619-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sonnweber T, Pizzini A, Nairz M et al (2018) Arachidonic acid metabolites in cardiovascular and metabolic diseases. Int J Mol Sci 19:3285. https://doi.org/10.3390/ijms19113285

    Article  CAS  PubMed Central  Google Scholar 

  27. Levick SP, Loch DC, Taylor SM, Janicki JS (2007) Arachidonic acid metabolism as a potential mediator of cardiac fibrosis associated with inflammation. J Immunol 178:641–646. https://doi.org/10.4049/jimmunol.178.2.641

    Article  CAS  PubMed  Google Scholar 

  28. Liu XY, Zhang AH, Fang H, Li MX, Song Q, Su J, Wang XJ (2018) Serum metabolomics strategy for understanding the therapeutic effects of Yin-Chen-Hao-Tang against Yanghuang syndrome. RSC Adv 8(14):7403–7413

    Article  CAS  Google Scholar 

  29. Guertin KA, Moore SC, Sampson JN et al (2014) Metabolomics in nutritional epidemiology: identifying metabolites associated with diet and quantifying their potential to uncover diet-disease relations in populations. Am J Clin Nutr 100:208–217. https://doi.org/10.3945/ajcn.113.078758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schmidt JA, Rinaldi S, Ferrari P et al (2015) Metabolic profiles of male meat eaters, fish eaters, vegetarians, and vegans from the EPIC-Oxford cohort. Am J Clin Nutr 102:1518–1526. https://doi.org/10.3945/ajcn.115.111989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Straus DS, Pascual G, Li M et al (2000) 15-Deoxy-Delta 12,14-prostaglandin J2 inhibits multiple steps in the NF-kappa B signaling pathway. Proc Natl Acad Sci 97:4844–4849. https://doi.org/10.1073/pnas.97.9.4844

    Article  CAS  PubMed  Google Scholar 

  32. Fujimori K, Maruyama T, Kamauchi S, Urade Y (2012) Activation of adipogenesis by lipocalin-type prostaglandin D synthase-generated δ12-PGJ2 acting through PPARγ-dependent and independent pathways. Gene 505:46–52. https://doi.org/10.1016/j.gene.2012.05.052

    Article  CAS  PubMed  Google Scholar 

  33. Catella F (1986) 11-dehydrothromboxane B2: a quantitative index of thromboxane A2 formation in the human circulation. Proc Natl Acad Sci 83:5861–5865. https://doi.org/10.1073/pnas.83.16.5861

    Article  CAS  PubMed  Google Scholar 

  34. Gonçalves LH, Dusse LMSA, Fernandes AP et al (2011) Urinary 11-dehydro thromboxane B2 levels in type 2 diabetic patients before and during aspirin intake. Clin Chim Acta 412:1366–1370. https://doi.org/10.1016/j.cca.2011.04.006

    Article  CAS  PubMed  Google Scholar 

  35. Zitka O, Skalickova S, Gumulec J et al (2012) Redox status expressed as GSH:GSSG ratio as a marker for oxidative stress in paediatric tumour patients. Oncol Lett 4:1247–1253. https://doi.org/10.3892/ol.2012.931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sentellas S, Morales-Ibanez O, Zanuy M, Albertí JJ (2014) GSSG/GSH ratios in cryopreserved rat and human hepatocytes as a biomarker for drug induced oxidative stress. Toxicol In Vitro 28:1006–1015. https://doi.org/10.1016/j.tiv.2014.04.017

    Article  CAS  PubMed  Google Scholar 

  37. Pan W, Ikeda K, Takebe M, Yamori Y (2001) Genistein, daidzein and glycitein inhibit growth and DNA synthesis of aortic smooth muscle cells from stroke-prone spontaneously hypertensive rats. J Nutr 131:1154–1158. https://doi.org/10.1093/jn/131.4.1154

    Article  CAS  PubMed  Google Scholar 

  38. Barber MN, Risis S, Yang C et al (2012) Plasma lysophosphatidylcholine levels are reduced in obesity and type 2 diabetes. PLoS ONE. https://doi.org/10.1371/journal.pone.0041456

    Article  PubMed  PubMed Central  Google Scholar 

  39. Heimerl S, Fischer M, Baessler A et al (2014) Alterations of plasma lysophosphatidylcholine species in obesity and weight loss. PLoS ONE. https://doi.org/10.1371/journal.pone.0111348

    Article  PubMed  PubMed Central  Google Scholar 

  40. Blake GJ, Ridker PM (2001) Novel clinical markers of vascular wall inflammation. Circ Res 89:763–771

    Article  CAS  Google Scholar 

  41. Gupta SC, Prasad S, Aggarwal BB (2016) Anti-inflammatory nutraceuticals and chronic diseases. Springer, New York, p 928

    Google Scholar 

  42. Liu M, Saeki K, Matsunobu T et al (2014) 12-hydroxyheptadecatrienoic acid promotes epidermal wound healing by accelerating keratinocyte migration via the BLT2 receptor. J Exp Med 211:1063–1078. https://doi.org/10.1084/jem.20132063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Albenberg LG, Wu GD (2014) Diet and the intestinal microbiome: associations, functions, and implications for health and disease. Gastroenterology 146:1564–1572. https://doi.org/10.1053/j.gastro.2014.01.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Foerster J, Maskarinec G, Reichardt N et al (2014) The influence of whole grain products and red meat on intestinal microbiota composition in normal weight adults: a randomized crossover intervention trial. PLoS ONE. https://doi.org/10.1371/journal.pone.0109606

    Article  PubMed  PubMed Central  Google Scholar 

  45. Van Gaal LF, Mertens IL, De Block CE (2006) Mechanisms linking obesity with cardiovascular disease. Nature 444:875–880

    Article  Google Scholar 

  46. Wu GD, Chen J, Hoffmann C et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 80(334):105–108. https://doi.org/10.1126/science.1208344

    Article  CAS  Google Scholar 

  47. Davis RA, Miyake JH, Hui Y, Spann NJ (2002) Regulation of cholesterol-7 ␣ -hydroxylase: BAREly missing a SHP. J Lipid Res 43:533–543

    CAS  PubMed  Google Scholar 

  48. Michalczyk A, Budkowska M, Dołȩgowska B et al (2017) Lysophosphatidic acid plasma concentrations in healthy subjects: circadian rhythm and associations with demographic, anthropometric and biochemical parameters. Lipids Health Dis. https://doi.org/10.1186/s12944-017-0536-0

    Article  PubMed  PubMed Central  Google Scholar 

  49. Divecha N, Irvine RF (1995) Phospholipid signaling. Cell 80:269–278

    Article  CAS  Google Scholar 

  50. Luke Mercia (2018) phosphatidylserine for brain function - everything you need to know. Nat Nootropic

  51. Jorissen BL, Brouns F, Van Boxtel MPJ, Riedel WJ (2002) Safety of soy-derived phosphatidylserine in elderly people. Nutr Neurosci 5:337–343. https://doi.org/10.1080/1028415021000033802

    Article  CAS  PubMed  Google Scholar 

  52. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  CAS  Google Scholar 

  53. O’Reilly P, Jackson PL, Noerager B et al (2009) N-α-PGP and PGP, potential biomarkers and therapeutic targets for COPD. Respir Res. https://doi.org/10.1186/1465-9921-10-38

    Article  PubMed  PubMed Central  Google Scholar 

  54. Taglialatela-Scafati O, Pollastro F, Chianese G et al (2013) Antimicrobial phenolics and unusual glycerides from Helichrysum italicum subsp. microphyllum. J Nat Prod 76:346–353. https://doi.org/10.1021/np3007149

    Article  CAS  PubMed  Google Scholar 

  55. Matz H (2010) Phototherapy for psoriasis: what to choose and how to use: facts and controversies. Clin Dermatol 28:73–80. https://doi.org/10.1016/j.clindermatol.2009.04.003

    Article  PubMed  Google Scholar 

  56. Long F, Yang H, Xu Y et al (2015) A strategy for the identification of combinatorial bioactive compounds contributing to the holistic effect of herbal medicines. Sci Rep. https://doi.org/10.1038/srep12361

    Article  PubMed  PubMed Central  Google Scholar 

  57. Efferth T, Koch E (2011) Complex interactions between phytochemicals. the multi-target therapeutic concept of phytotherapy. Curr Drug Targ 12:122–132. https://doi.org/10.2174/138945011793591626

    Article  CAS  Google Scholar 

  58. Yan X, Zhang YL, Zhang L et al (2019) Gallic acid suppresses cardiac hypertrophic remodeling and heart failure. Mol Nutr Food Res. https://doi.org/10.1002/mnfr.201800807

    Article  PubMed  Google Scholar 

  59. Hohl CM, Rösen P (1987) The role of arachidonic acid in rat heart cell metabolism. Biochim Biophys Acta (BBA) 921:356–363. https://doi.org/10.1016/0005-2760(87)90037-3

    Article  CAS  Google Scholar 

  60. Gandhi GR, Jothi G, Antony PJ et al (2014) Gallic acid attenuates high-fat diet fed-streptozotocin-induced insulin resistance via partial agonism of PPARγ in experimental type 2 diabetic rats and enhances glucose uptake through translocation and activation of GLUT4 in PI3 K/p-Akt signaling pathway. Eur J Pharmacol 745:201–216. https://doi.org/10.1016/j.ejphar.2014.10.044

    Article  CAS  PubMed  Google Scholar 

  61. Persaud SJ, Muller D, Belin VD et al (2007) The role of arachidonic acid and its metabolites in insulin secretion from human islets of langerhans. Diabetes 56:197–203. https://doi.org/10.2337/db06-0490

    Article  CAS  PubMed  Google Scholar 

  62. Bettedi L, Foukas LC (2017) Growth factor, energy and nutrient sensing signalling pathways in metabolic ageing. Biogerontology 18:913–929. https://doi.org/10.1007/s10522-017-9724-6

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bertrand L, Horman S, Beauloye C, Vanoverschelde JL (2008) Insulin signalling in the heart. Cardiovasc Res 79:238–248

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Director, Rajiv Gandhi Center for Biotechnology for providing the facilities and funding this study.

Funding

We thank Rajiv Gandhi Center for Biotechnology, Trivandrum for funding this study.

Author information

Authors and Affiliations

Authors

Contributions

VK, TRSK, and CCK designed and directed the overall project and interpreted the results. VK, AKA, VMD, and VJ performed all the experiments. VK analyzed and drafted the manuscript. CCK revised and edited the manuscript.

Corresponding author

Correspondence to Chandrasekharan C. Kartha.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest.

Ethical approval

All animal experiments were carried out with the approval of the Institutional animal ethics committee (IAEC) in Rajiv Gandhi Center for Biotechnology (RGCB) under the protocol no. IAEC/150/CCK/2012. Animal experiments were conducted by strictly following the rules and regulations of the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), Government of India.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Chemical compound studied in this article

Gallic acid (PubChem CID): 370; Ellagic acid (PubChem CID): 5281855; Arachidonic acid (PubChem CID): 444899.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Kumar, A.A., Joseph, V. et al. Untargeted metabolomics reveals alterations in metabolites of lipid metabolism and immune pathways in the serum of rats after long-term oral administration of Amalaki rasayana. Mol Cell Biochem 463, 147–160 (2020). https://doi.org/10.1007/s11010-019-03637-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-019-03637-1

Keywords

Navigation