Skip to main content
Log in

Resistant starch utilization by Bifidobacterium, the beneficial human gut bacteria

  • Review
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Resistant starch (RS) reaches the large intestine largely intact, where it is fermented by the gut microbiota, resulting in the production of short-chain fatty acids (SCFAs) that have beneficial effects on the human body. Bifidobacteria are a major species widely used in the probiotic field, and are increased in the gut by RS, indicating their importance in RS metabolism in the intestine. Bifidobacteria have a genetic advantage in starch metabolism as they possess a significant number of starch-degrading enzymes and extraordinary three RS-degrading enzymes, allowing them to utilize RS. However, to date, only three species of RS-degrading bifidobacteria have been reported as single isolates B. adolescentis, B. choerinum, and B. pseudolongum. In this review, we describe recent studies on RS utilization by Bifidobacterium, based on their biochemical characteristics and genetic findings. This review provides a crucial understanding of how bifidobacteria survive in specific niches with abundant RS such as the human gut.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexander C, Swanson KS, Fahey Jr GC, Garleb KA. Perspective: physiologic importance of short-chain fatty acids from nondigestible carbohydrate fermentation. Advances in Nutrition. 10: 576-589 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashaolu T, Ashaolu J, Adeyeye S. Fermentation of prebiotics by human colonic microbiota in vitro and short‐chain fatty acids production: a critical review. Journal of Applied Microbiology. 130: 677-687 (2021)

    Article  CAS  PubMed  Google Scholar 

  • Brown I, Warhurst M, Arcot J, Playne M, Illman RJ, Topping DL. Fecal numbers of bifidobacteria are higher in pigs fed Bifidobacterium longum with a high amylose cornstarch than with a low amylose cornstarch. The Journal of Nutrition. 127: 1822-1827 (1997)

    Article  CAS  PubMed  Google Scholar 

  • Centanni M, Lawley B, Butts CA, Roy NC, Lee J, Kelly WJ, Tannock GW. Bifidobacterium pseudolongum in the ceca of rats fed Hi-Maize starch has characteristics of a keystone species in bifidobacterial blooms. Applied and Environmental Microbiology. 84: e00547-18 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerqueira FM, Photenhauer AL, Pollet RM, Brown HA, Koropatkin NM. Starch digestion by gut bacteria: crowdsourcing for carbs. Trends in Microbiology. 28: 95-108 (2020)

    Article  CAS  PubMed  Google Scholar 

  • Champ M, Langkilde A-M, Brouns F, Kettlitz B, Collet YLB. Advances in dietary fibre characterisation. 1. Definition of dietary fibre, physiological relevance, health benefits and analytical aspects. Nutrition Research Reviews. 16: 71-82 (2003)

    Article  CAS  PubMed  Google Scholar 

  • Cockburn DW, Orlovsky NI, Foley MH, Kwiatkowski KJ, Bahr CM, Maynard M, Demeler B, Koropatkin NM. Molecular details of a starch utilization pathway in the human gut symbiont Eubacterium rectale. Molecular Microbiology. 95: 209-230 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Crittenden R, Laitila A, Forssell P, Mättö J, Saarela M, Mattila-Sandholm T, Myllärinen P. Adhesion of bifidobacteria to granular starch and its implications in probiotic technologies. Applied and Environmental Microbiology. 67: 3469-3475 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeMartino P, Cockburn DW. Resistant starch: impact on the gut microbiome and health. Current Opinion in Biotechnology. 61: 66-71 (2020)

    Article  CAS  PubMed  Google Scholar 

  • Den Besten G, Van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research. 54: 2325-2340 (2013)

    Article  Google Scholar 

  • Dobranowski PA, Stintzi A. Resistant starch, microbiome, and precision modulation. Gut Microbes. 13: 1926842 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  • Duranti S, Turroni F, Lugli GA, Milani C, Viappiani A, Mangifesta M, Gioiosa L, Palanza P, van Sinderen D, Ventura M. Genomic characterization and transcriptional studies of the starch-utilizing strain Bifidobacterium adolescentis 22L. Applied and Environmental Microbiology. 80: 6080-6090 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellis RP, Cochrane MP, Dale MFB, Duffus CM, Lynn A, Morrison IM, Prentice RDM, Swanston JS, Tiller SA. Starch production and industrial use. Journal of the Science of Food and Agriculture. 77: 289-311 (1998)

    Article  CAS  Google Scholar 

  • Englyst HN, Cummings JH. Digestion of the polysaccharides of some cereal foods in the human small intestine. The American Journal of Clinical Nutrition. 42: 778-787 (1985)

    Article  CAS  PubMed  Google Scholar 

  • Englyst HN, Kingman S, Cummings J. Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition. 46: S33-50 (1992)

    PubMed  Google Scholar 

  • Flint HJ, Duncan SH, Scott KP, Louis P. Interactions and competition within the microbial community of the human colon: links between diet and health. Environmental Microbiology. 9: 1101-1111 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Fontes CM, Gilbert HJ. Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annual Review of Biochemistry. 79: 655-681 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Fu X, Liu Z, Zhu C, Mou H, Kong Q. Nondigestible carbohydrates, butyrate, and butyrate-producing bacteria. Critical Reviews in Food Science and Nutrition. 59: S130-S152 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves P, Martel F. Butyrate and colorectal cancer: the role of butyrate transport. Current Drug Metabolism. 14: 994-1008 (2013)

    Article  PubMed  Google Scholar 

  • Han J-A, BeMiller JN. Preparation and physical characteristics of slowly digesting modified food starches. Carbohydrate Polymers 67: 366-374 (2007)

    Article  CAS  Google Scholar 

  • Imberty A, Buléon A, Tran V, Péerez S. Recent advances in knowledge of starch structure. Starch‐Stärke. 43: 375-384 (1991)

    Article  CAS  Google Scholar 

  • Jung D-H, Chung W-H, Seo D-H, Kim Y-J, Nam Y-D, Park C-S. Complete genome sequence of Bifidobacterium adolescentis P2P3, a human gut bacterium possessing strong resistant starch-degrading activity. 3 Biotech. 10: 1-9 (2020a)

    Article  PubMed  Google Scholar 

  • Jung D-H, Chung W-H, Seo D-H, Nam Y-D, Yoon S, Park C-S. Complete genome sequence of Bifidobacterium choerinum FMB-1, a resistant starch-degrading bacterium. Journal of Biotechnology. 274: 28-32 (2018a)

    Article  CAS  PubMed  Google Scholar 

  • Jung D-H, Seo D-H, Kim G-Y, Nam Y-D, Song E-J, Yoon S, Park C-S. The effect of resistant starch (RS) on the bovine rumen microflora and isolation of RS-degrading bacteria. Applied Microbiology and Biotechnology. 102: 4927-4936 (2018b)

    Article  CAS  PubMed  Google Scholar 

  • Jung D-H, Seo D-H, Kim Y-J, Chung W-H, Nam Y-D, Park C-S. The presence of resistant starch-degrading amylases in Bifidobacterium adolescentis of the human gut. International Journal of Biological Macromolecules. 161: 389-397 (2020b)

    Article  CAS  PubMed  Google Scholar 

  • Jung D-H, Kim G-Y, Kim I-Y, Seo D-H, Nam Y-D, Kang H, Song Y, Park C-S. Bifidobacterium adolescentis P2P3, a human gut bacterium having strong non-gelatinized resistant starch-degrading activity. Journal of Microbiology and Biotechnology. 29:1904-1915 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Kim S-Y, Kim H, Kim Y-J, Jung D-H, Seo D-H, Jung J-H, Park C-S. Enzymatic analysis of truncation mutants of a type II pullulanase from Bifidobacterium adolescentis P2P3, a resistant starch-degrading gut bacterium. International Journal of Biological Macromolecules. 193: 1340-1349 (2021)

    Article  CAS  PubMed  Google Scholar 

  • Klijn A, Mercenier A, Arigoni F. Lessons from the genomes of bifidobacteria. FEMS Microbiology Reviews. 29: 491-509 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Laureys D, Cnockaert M, De Vuyst L, Vandamme P. Bifidobacterium aquikefiri sp. nov., isolated from water kefir. International Journal of Systematic and Evolutionary Microbiology. 66: 1281-1286 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Le Leu RK, Hu Y, Brown IL, Young GP. Effect of high amylose maize starches on colonic fermentation and apoptotic response to DNA-damage in the colon of rats. Nutrition & Metabolism. 6: 11 (2009)

    Article  Google Scholar 

  • Liu S, Ren F, Zhao L, Jiang L, Hao Y, Jin J, Zhang M, Guo H, Lei X, Sun E. Starch and starch hydrolysates are favorable carbon sources for Bifidobacteria in the human gut. BMC Microbiology. 15: 54 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martens EC, Koropatkin NM, Smith TJ, Gordon JI. Complex glycan catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm. Journal of Biological Chemistry. 284: 24673-24677 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin-Gallausiaux C, Marinelli L, Blottière HM, Larraufie P, Lapaque N. SCFA: mechanisms and functional importance in the gut. Proceedings of the Nutrition Society. 80: 37-49 (2021)

    Article  CAS  PubMed  Google Scholar 

  • Milani C, Lugli GA, Duranti S, Turroni F, Bottacini F, Mangifesta M, Sanchez B, Viappiani A, Mancabelli L, Taminiau B. Genome encyclopaedia of type strains of the genus Bifidobacterium. Applied and Environmental Microbiology. 80: 6290-6302 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  • Milani C, Lugli GA, Duranti S, Turroni F, Mancabelli L, Ferrario C, Mangifesta M, Hevia A, Viappiani A, Scholz M. Bifidobacteria exhibit social behavior through carbohydrate resource sharing in the gut. Scientific reports. 5: 15782 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhya I, Moraïs S, Laverde‐Gomez J, Sheridan PO, Walker AW, Kelly W, Klieve AV, Ouwerkerk D, Duncan SH, Louis P. Sporulation capability and amylosome conservation among diverse human colonic and rumen isolates of the keystone starch‐degrader Ruminococcus bromii. Environmental Microbiology. 20: 324-336 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Niderman-Meyer O, Zeidman T, Shimoni E, Kashi Y. Mechanisms involved in governing adherence of Vibrio cholerae to granular starch. Applied and Environmental Microbiology. 76: 1034-1043 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Phillips J, Muir JG, Birkett A, Lu ZX, Jones GP, O'Dea K, Young GP. Effect of resistant starch on fecal bulk and fermentation-dependent events in humans. The American Journal of Clinical Nutrition. 62: 121-130 (1995)

    Article  CAS  PubMed  Google Scholar 

  • Raigond P, Ezekiel R, Raigond B. Resistant starch in food: a review. Journal of the Science of Food and Agriculture. 95: 1968-1978 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishna B, Venkataraman S, Srinivasan P, Dash P, Young GP, Binder HJ. Amylase-resistant starch plus oral rehydration solution for cholera. New England Journal of Medicine. 342: 308-313 (2000)

    Article  CAS  PubMed  Google Scholar 

  • Robertson MD, Bickerton AS, Dennis AL, Vidal H, Frayn KN. Insulin-sensitizing effects of dietary resistant starch and effects on skeletal muscle and adipose tissue metabolism. The American Journal of Clinical Nutrition. 82: 559-567 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Ryan SM, Fitzgerald GF, van Sinderen D. Screening for and identification of starch-, amylopectin-, and pullulan-degrading activities in bifidobacterial strains. Applied and Environmental Microbiology. 72: 5289-5296 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salyers AA, Leedle J. Carbohydrate metabolism in the human colon. 1st edn, pp 129-144. Human intestinal microflora in health and disease. Hentges D (ed). Elsevier Academic Press, NY, USA (1983).

  • Sela D, Chapman J, Adeuya A, Kim J, Chen F, Whitehead T, Lapidus A, Rokhsar D, Lebrilla C, German J. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proceedings of the National Academy of Sciences. 105: 18964-18969 (2008)

  • Seneviratne H, Biliaderis C. Action of α-amylases on amylose-lipid complex superstructures. Journal of Cereal Science 13: 129-143 (1991)

    Article  CAS  Google Scholar 

  • Silva YP, Bernardi A, Frozza RL. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Frontiers in Endocrinology. 11: 25 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  • Silvi S, Rumney C, Cresci A, Rowland I. Resistant starch modifies gut microflora and microbial metabolism in human flora‐associated rats inoculated with faeces from Italian and UK donors. Journal of Applied Microbiology. 86: 521-530 (1999)

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Singh J, Kaur L, Sodhi NS, Gill BS. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chemistry. 81: 219-231 (2003)

    Article  CAS  Google Scholar 

  • Sybille T, June Z, Michael K, Roy M, Maria L M. The intestinal microbiota in aged mice is modulated by dietary resistant starch and correlated with improvements in host responses. FEMS Microbiology Ecology. 83: 299-309 (2013)

    Article  Google Scholar 

  • Valdés L, Cuervo A, Salazar N, Ruas-Madiedo P, Gueimonde M, González SJF, The relationship between phenolic compounds from diet and microbiota: impact on human health. Food & Function. 6: 2424-2439 (2015)

    Article  Google Scholar 

  • Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D. Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiology and Molecular Biology Reviews. 71: 495-548 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker AW, Duncan SH, Leitch ECM, Child MW, Flint HJ. pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Applied and Environmental Microbiology. 71: 3692-3700 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, Brown D, Stares MD, Scott P, Bergerat A. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. The ISME Journal. 5: 220 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Wardman JF, Bains RK, Rahfeld P, Withers SG. Carbohydrate-active enzymes (CAZymes) in the gut microbiome. Nature Reviews Microbiology. 20: 542-556 (2022)

    Article  CAS  PubMed  Google Scholar 

  • Woo K, Seib P. Cross-linked resistant starch: Preparation and properties. Cereal Chemistry 79: 819-825 (2002)

    Article  CAS  Google Scholar 

  • Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R. Linking long-term dietary patterns with gut microbial enterotypes. Science. 334: 105-108 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young GP, Hu Y, Le Leu RK, Nyskohus L. Dietary fibre and colorectal cancer: a model for environment–gene interactions. Molecular Nutrition & Food Research. 49: 571-584 (2005)

    Article  Google Scholar 

  • Ze X, Ben David Y, Laverde-Gomez JA, Dassa B, Sheridan PO, Duncan SH, Louis P, Henrissat B, Juge N, Koropatkin NM. Unique organization of extracellular amylases into amylosomes in the resistant starch-utilizing human colonic Firmicutes bacterium Ruminococcus bromii. MBio. 6: e01058-15 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ze X, Duncan SH, Louis P, Flint HJ. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. The ISME Journal. 6: 1535-1543 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korean government, Ministry of Science and ICT [National Research Foundation of Korea (No. 2021R1A4A1023437)], and the Ministry of Environment [National Institute of Biological Resources (No. NIBR202203111)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheon-Seok Park.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, DH., Park, CS. Resistant starch utilization by Bifidobacterium, the beneficial human gut bacteria. Food Sci Biotechnol 32, 441–452 (2023). https://doi.org/10.1007/s10068-023-01253-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-023-01253-w

Keywords

Navigation