Skip to main content

Advertisement

Log in

The effect of resistant starch (RS) on the bovine rumen microflora and isolation of RS-degrading bacteria

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Resistant starch (RS) in the diet reaches the large intestine without degradation, where it is decomposed by the commensal microbiota. The fermentation of RS produces secondary metabolites including short-chain fatty acids (SCFAs), which have been linked to a variety of physiological and health effects. Therefore, the availability of RS as a prebiotic is a current issue. The objectives of this study were (1) to use metagenomics to observe microbial flora changes in Bos taurus coreanae rumen fluid in the presence of RS and (2) to isolate RS-degrading microorganisms. The major microbial genus in a general rumen fluid was Succiniclasticum sp., whereas Streptococcus sp. immediately predominated after the addition of RS into the culture medium and was then drastically replaced by Lactobacillus sp. The presence of Bifidobacterium sp. was also observed continuously. Several microorganisms with high RS granule-degrading activity were identified and isolated, including B. choerinum FMB-1 and B. pseudolongum FMB-2. B. choerinum FMB-1 showed the highest RS-hydrolyzing activity and degraded almost 60% of all substrates tested. Coculture experiments demonstrated that Lactobacillus brevis ATCC 14869, which was isolated from human feces, could grow using reducing sugars generated from RS by B. choerinum FMB-1. These results suggest that Bifidobacterium spp., especially B. choerinum FMB-1, are the putative primary degrader of RS in rumen microbial flora and could be further studied as probiotic candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bragg L, Stone G, Imelfort M, Hugenholtz P, Tyson GW (2012) Fast, accurate error-correction of amplicon pyrosequences using Acacia. Nat Methods 9:425–426

    Article  PubMed  CAS  Google Scholar 

  • Canani RB, Di Costanzo M, Leone L, Pedata M, Meli R, Calignano A (2011) Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol 17:1519–1528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cockburn DW, Orlovsky NI, Foley MH, Kwiatkowski KJ, Bahr CM, Maynard M, Demeler B, Koropatkin NM (2015) Molecular details of a starch utilization pathway in the human gut symbiont Eubacterium rectale. Mol Microbiol 95:209–230

    Article  PubMed  CAS  Google Scholar 

  • Crittenden R, Laitila A, Forssell P, Mättö J, Saarela M, Mattila-Sandholm T, Myllärinen P (2001) Adhesion of bifidobacteria to granular starch and its implications in probiotic technologies. Appl Environ Microbiol 67:3469–3475

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DuBois M, Gilles KA, Hamilton JK, Rebers PT, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Ellis RP, Cochrane MP, Dale MFB, Duffus CM, Lynn A, Morrison IM, Prentice RDM, Swanston JS, Tiller SA (1998) Starch production and industrial use. J Sci Food Agric 77:289–311

    Article  CAS  Google Scholar 

  • Ferguson LR, Tasman-Jones C, Englyst H, Harris PJ (2000) Comparative effects of three resistant starch preparations on transit time and short-chain fatty acid production in rats. Nutr Cancer 36:230–237

    Article  PubMed  CAS  Google Scholar 

  • Fuentes-Zaragoza E, Sánchez-Zapata E, Sendra E, Sayas E, Navarro C, Fernández-López J, Pérez-Alvarez JA (2011) Resistant starch as prebiotic: a review. Starch-Stärke 63:406–415

    Article  CAS  Google Scholar 

  • Keenan MJ, Zhou J, McCutcheon KL, Raggio AM, Bateman HG, Todd E, Jones CK, Tulley RT, Melton S, Martin RJ (2006) Effects of resistant starch, a non-digestible fermentable fiber, on reducing body fat. Obesity 14:1523–1534

    Article  PubMed  CAS  Google Scholar 

  • Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Thurber RLV, Knight R (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Le Leu RK, Brown IL, Hu Y, Bird AR, Jackson M, Esterman A, Young GP (2005) A synbiotic combination of resistant starch and Bifidobacterium lactis facilitates apoptotic deletion of carcinogen-damaged cells in rat colon. J Nutr 135:996–1001

    Article  PubMed  Google Scholar 

  • Le Leu RK, Hu Y, Brown IL, Young GP (2009) Effect of high amylose maize starches on colonic fermentation and apoptotic response to DNA-damage in the colon of rats. Nutr Metab 6:11

    Article  CAS  Google Scholar 

  • Liu S, Ren F, Zhao L, Jiang L, Hao Y, Jin J, Zhang M, Guo H, Lei X, Sun E (2015) Starch and starch hydrolysates are favorable carbon sources for bifidobacteria in the human gut. BMC Microbiol 15:54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mao S, Zhang M, Liu J, Zhu W (2015) Characterising the bacterial microbiota across the gastrointestinal tracts of dairy cattle: membership and potential function. Sci Rep 5:16116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S-I, Lee YC (2005) Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Anal Biochem 339:69–72

    Article  PubMed  CAS  Google Scholar 

  • McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6:610–618

    Article  PubMed  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Niderman-Meyer O, Zeidman T, Shimoni E, Kashi Y (2010) Mechanisms involved in governing adherence of Vibrio cholerae to granular starch. Appl Environ Microbiol 76:1034–1043

    Article  PubMed  CAS  Google Scholar 

  • Ørskov E (1986) Starch digestion and utilization in ruminants. J Anim Sci 63:1624–1633

    Article  PubMed  Google Scholar 

  • Phillips J, Muir JG, Birkett A, Lu ZX, Jones GP, O'Dea K, Young GP (1995) Effect of resistant starch on fecal bulk and fermentation-dependent events in humans. Am J Clin Nutr 62:121–130

    Article  PubMed  CAS  Google Scholar 

  • Qian W, Li Z, Ao W, Zhao G, Li G, Wu J (2017) Bacterial community composition and fermentation in the rumen of Xinjiang brown cattle (Bos taurus), Tarim red deer (Cervus elaphus yarkandensis), and karakul sheep (Ovis aries). Can J Microbiol 63:375–383

    Article  PubMed  CAS  Google Scholar 

  • Ramakrishna B, Venkataraman S, Srinivasan P, Dash P, Young GP, Binder HJ (2000) Amylase-resistant starch plus oral rehydration solution for cholera. N Engl J Med 342:308–313

    Article  PubMed  CAS  Google Scholar 

  • Rideout JR, He Y, Navas-Molina JA, Walters WA, Ursell LK, Gibbons SM, Chase J, McDonald D, Gonzalez A, Robbins-Pianka A (2014) Subsampled open-reference clustering creates consistent, comprehensive OTU definitions and scales to billions of sequences. Peer J 2:e545

    Article  PubMed  PubMed Central  Google Scholar 

  • Robertson MD, Bickerton AS, Dennis AL, Vidal H, Frayn KN (2005) Insulin-sensitizing effects of dietary resistant starch and effects on skeletal muscle and adipose tissue metabolism. Am J Clin Nutr 82:559–567

    Article  PubMed  CAS  Google Scholar 

  • Rosin PM, Lajolo FM, Menezes EW (2002) Measurement and characterization of dietary starches. J Food Compos Anal 15:367–377

    Article  CAS  Google Scholar 

  • Salyers AA, Leedle J, Hentges D (1983) Carbohydrate metabolism in the human colon—human intestinal microflora in health and disease, 1st edn. Elsevier Academic Press, New York, pp 129–144

    Book  Google Scholar 

  • Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863–864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Umu ÖC, Frank JA, Fangel JU, Oostindjer M, Da Silva CS, Bolhuis EJ, Bosch G, Willats WG, Pope PB, Diep DB (2015) Resistant starch diet induces change in the swine microbiome and a predominance of beneficial bacterial populations. Microbiome 3:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker AW, Duncan SH, Leitch ECM, Child MW, Flint HJ (2005) pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl Environ Microbiol 71:3692–3700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Young GP, Hu Y, Le Leu RK, Nyskohus L (2005) Dietary fibre and colorectal cancer: a model for environment–gene interactions. Mol Nutr Food Res 49:571–584

    Article  PubMed  Google Scholar 

  • Ze X, Duncan SH, Louis P, Flint HJ (2012) Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J 6:1535–1543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7(1–2):203–214

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (no. 2017R1A2B4004218). Additionally, this research was partly supported by Main Research Programs (grant number E0170602-02) of the Korea Food Research Institute funded by the Ministry of Science and ICT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheon-Seok Park.

Ethics declarations

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 548 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, DH., Seo, DH., Kim, GY. et al. The effect of resistant starch (RS) on the bovine rumen microflora and isolation of RS-degrading bacteria. Appl Microbiol Biotechnol 102, 4927–4936 (2018). https://doi.org/10.1007/s00253-018-8971-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-8971-z

Keywords

Navigation