Skip to main content
Log in

Current perspectives on the beneficial effects of soybean isoflavones and their metabolites on plants

  • Review
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Soybeans have traditionally been a staple part of the human diet being highly rich in protein and lipid content. In an addition to the high nutritional components, soybeans have several functional components, like isoflavones, saponins, lecithin, and oligosaccharides. Soybeans emerge as a healthy functional food option. Isoflavones are most notable functional component of soybeans, exhibiting antioxidant activity while preventing plant-related diseases (e.g., antimicrobial and antiherbivore activities) and having positive effects on the life quality of plants. Isoflavones are thus sometimes referred to as phytochemicals. The latest research trends evince substantial interest in the biological efficacy of isoflavones in the human body as well as in plants and their related mechanisms. However, there is little information on the relationship between isoflavones and plants than beneficial human effects. This review discusses what is known about the physiological communication (transport and secretion) between isoflavones and plants, especially in soybeans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Lateif K, Bogusz D, Hocher V. The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria. Plant Signaling and Behavior. 7: 636-641 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahemad M, Kibret M. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University-Science. 26: 1-20 (2014)

    Article  Google Scholar 

  • Ahkami AH, Allen White R, Handakumbura PP, Jansson C. Rhizosphere engineering: Enhancing sustainable plant ecosystem productivity. Rhizosphere. 3: 233-243 (2017)

    Article  Google Scholar 

  • Ahmad MZ, Li P, Wang J, Rehman NU, Zhao J. Isoflavone malonyltransferases GmIMaT1 and GmIMaT3 differently modify isoflavone glucosides in soybean (Glycine max) under various stresses. Frontiers in Plant Science. 8: 735 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  • Akashi T, Aoki T, Ayabe S. Molecular and biochemical characterization of 2-hydroxyisoflavanone dehydratase. Involvement of carboxylesterase-like proteins in leguminous isoflavone biosynthesis. Plant Physiology. 137: 882-891 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alberton D, Valdameri G, Rotuno Moure VR, Monteiro RA, de Oliveira Pedrosa F, Marcelo Müller-Santos M, de Souza EM. What did we learn from plant growth-promoting rhizobacteria (PGPR)-grass associations studies through proteomic and metabolomic approaches? Frontiers in Sustainable Food Systems. 4: 607343 (2020)

    Article  Google Scholar 

  • Aloo BN, Makumba BA, Mbega ER. The potential of Bacilli rhizobacteria for sustainable crop production and environmental sustainability. Microbiological Research. 219: 26-39 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Anderson RL, Wolf WJ. Compositional changes in trypsin inhibitors, phytic acid, saponins and isoflavones related to soybean processing. Journal of Nutrition. 125: 581S-588S (1995)

    CAS  Google Scholar 

  • Andres S, Hansen U, Niemann B, Palavinskas R, Lampen A. Determination of the isoflavone composition and estrogenic activity of commercial dietary supplements based on soy or red clover. Food and Function. 6: 2017-2025 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Asati V, Sharma PK. Purification and characterization of an isoflavones conjugate hydrolyzing beta-glucosidase (ICHG) from Cyamopsis tetragonoloba (guar). Biochemistry and Biophysics Reports. 20: 100669 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  • Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian S, Smith DL. Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Frontiers in Plant Science. 9: 1473 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  • Bukhat S, Imran A, Javaid S, Shahid M, Majeed A, Naqqash T. Communication of plants with microbial world: Exploring the regulatory networks for PGPR mediated defense signaling. Microbiological Research. 238: 126486 (2020)

    Article  CAS  PubMed  Google Scholar 

  • Canarini A, Kaiser C, Merchant A, Richter A, Wanek W. Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Frontiers in Plant Science. 10: 157 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  • Chatterjee C, Gleddie S, Xiao CW. Soybean bioactive peptides and their functional properties. Nutrients. 10: 1211 (2018)

    Article  PubMed Central  CAS  Google Scholar 

  • Chu S, Wang J, Zhu Y, Liu S, Zhou X, Zhang H, Wang CE, Yang W, Tian Z, Cheng H, Yu D. An R2R3-type MYB transcription factor, GmMYB29, regulates isoflavone biosynthesis in soybean. PLoS Genetetics. 13: e1006770 (2017)

    Article  CAS  Google Scholar 

  • Chung IM, Oh JY, Kim SH. Comparative study of phenolic compounds, vitamin E, and fatty acids compositional profiles in black seed-coated soybeans (Glycine max (L.) Merrill) depending on pickling period in brewed vinegar. Chemistry Central Journal. 11: 64 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrath U. Systemic acquired resistance. Plant Signaling Behavior. 1: 179-184 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalio RJD, Herlihy J, Oliveira TS, McDowell JM, Machado M. Effector biology in focus: A primer for computational prediction and functional characterization. Molecular Plant-Microbe Interactions. 31: 22-33 (2018)

    Article  PubMed  Google Scholar 

  • Dao TT, Linthorst HJ, Verpoorte R. Chalcone synthase and its functions in plant resistance. Phytochemistry Reviews. 10: 397-412 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dastogeer KMG, Tumpa FH, Sultana A, Akter MA, Chakraborty A. Plant microbiome–an account of the factors that shape community composition and diversity. Current Plant Biology. 23: 100161 (2020)

    Article  Google Scholar 

  • Dixon RA. Natural products and plant disease resistance. Nature. 411: 843-847 (2001)

    Article  CAS  PubMed  Google Scholar 

  • Dong NQ, Lin HX. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. Journal of Integrative Plant Biology. 63: 180-209 (2021)

    Article  CAS  PubMed  Google Scholar 

  • Dutta S, Mitra M, Agarwal P, Mahapatra K, De S, Sett U, Roy S. Oxidative and genotoxic damages in plants in response to heavy metal stress and maintenance of genome stability. Plant Signaling Behavior. 13: e1460048 (2018)

    PubMed  PubMed Central  Google Scholar 

  • Eum HL, Park Y, Yi TG, Lee JW, Ha KS, Choi IY, Park NI. Effect of germination environment on the biochemical compounds and anti-inflammatory properties of soybean cultivars. PLoS One. 15: e0232159 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falcone Ferreyra ML, Rius SP, Casati P. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Frontiers in Plant Science. 3: 222 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimatsu T, Endo K, Yazaki K, Sugiyama A. Secretion dynamics of soyasaponins in soybean roots and effects to modify the bacterial composition. Plant Direct. 4: e00259 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Calderon M, Perez-Delgado CM, Palove-Balang P, Betti M, Marquez AJ. Flavonoids and isoflavonoids biosynthesis in the model legume Lotus japonicus; Connections to nitrogen metabolism and photorespiration. Plants (Basel). 9: 774 (2020)

    Article  CAS  Google Scholar 

  • Gupta OP, Nigam D, Dahuja A, Kumar S, Vinutha T, Sachdev A, Praveen S. Regulation of isoflavone biosynthesis by miRNAs in two contrasting soybean genotypes at different seed developmental stages. Frontiers in Plant Science. 8: 567 (2017)

    PubMed  PubMed Central  Google Scholar 

  • Han Q, Ma Q, Chen Y, Tian B, Xu L, Bai Y, Chen W, Li X. Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean. ISME Journal. 14: 1915-1928 (2020)

    Article  CAS  Google Scholar 

  • He FJ, Chen JQ. Consumption of soybean, soy foods, soy isoflavones and breast cancer incidence: Differences between Chinese women and women in Western countries and possible mechanisms. Food Science and Human Wellness. 2: 146-161 (2013)

    Article  Google Scholar 

  • Igiehon NO, Babalola OO. Rhizosphere microbiome modulators: Contributions of nitrogen fixing bacteria towards sustainable agriculture. International Journal of Environmental Research and Public Health. 15: 574 (2018)

    Article  PubMed Central  CAS  Google Scholar 

  • Ismail B, Hayes K, Beta-glycosidase activity toward different glycosidic forms of isoflavones. Journal of Agricultural and Food Chemistry. 53: 4918-4924 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Izumi T, Piskula MK, Osawa S, Obata A, Tobe K, Saito M, Kataoka S, Kubota Y, Kikuchi M. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. Journal of Nutrition. 130: 1695-1699 (2000)

    Article  CAS  Google Scholar 

  • Jahan MA, Harris B, Lowery M, Coburn K, Infante AM, Percifield RJ, Ammer AG, Kovinich N. The NAC family transcription factor GmNAC42-1 regulates biosynthesis of the anticancer and neuroprotective glyceollins in soybean. BMC Genomics. 20: 149 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  • Jayaraman D, Forshey KL, Grimsrud PA, Ane JM. Leveraging proteomics to understand plant-microbe interactions. Frontiers in Plant Science. 3: 44 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung YS, Kim YJ, Kim AT, Jang D, Kim MS, Seo DH, Nam TG, Rha CS, Park CS, Kim DO. Enrichment of polyglucosylated isoflavones from soybean isoflavone aglycones using optimized amylosucrase transglycosylation. Molecules. 25: 181 (2020a)

    Article  CAS  PubMed Central  Google Scholar 

  • Jung YS, Rha CS, Baik MY, Baek NI, Kim DO. A brief history and spectroscopic analysis of soy isoflavones. Food Science and Biotechnology. 29: 1605-1617 (2020b)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kang J, Badger TM, Ronis MJ, Wu X. Non-isoflavone phytochemicals in soy and their health effects. Journal of Agricultural and Food Chemistry. 58: 8119-8133 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Kape R, Parniske M, Brandt S, Werner D. Isoliquiritigenin, a strong nod gene- and glyceollin resistance-inducing flavonoid from soybean root exudate. Applied Environmental Microbiology. 58: 1705-1710 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korenblum E, Dong Y, Szymanski J, Panda S, Jozwiak A, Massalha H, Meir S, Rogachev I, Aharoni A. Rhizosphere microbiome mediates systemic root metabolite exudation by root-to-root signaling. Proceedings of the National Academy of Sciences of the United States of America. 117: 3874-3883 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krizova L, Dadakova K, Kasparovska J, Kasparovsky T. Isoflavones. Molecules. 24: 1076 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  • Ku YS, Ng MS, Cheng SS, Lo AW, Xiao Z, Shin TS, Chung G, Lam HM. Understanding the composition, biosynthesis, accumulation and transport of flavonoids in crops for the promotion of crops as healthy sources of flavonoids for human consumption. Nutrients. 12: 1717 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  • Kubes J, Skalicky M, Tumova L, Martin J, Hejnak V, Martinkova J. Vanadium elicitation of Trifolium pratense L. cell culture and possible pathways of produced isoflavones transport across the plasma membrane. Plant Cell Reports. 38: 657-671 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Kudou S, Fleury Y, Welti D, Magnolato D, Uchida T, Kitamura K, Okubo K. Malonyl isoflavone glycosides in soybean seeds (Glycine max Merrill). Agricultural and Biological Chemistry. 55: 2227-2233 (2014)

    Google Scholar 

  • Kushida M, Okouchi R, Iwagaki Y, Asano M, Du MX, Yamamoto K, Tsuduki T. Fermented soybean suppresses visceral fat accumulation in mice. Molecular Nutrition and Food Research. 62: e1701054 (2018)

    Article  PubMed  CAS  Google Scholar 

  • Lygin AV, Zernova OV, Hill CB, Kholina NA, Widholm JM, Hartman GL, Lozovaya VV. Glyceollin is an important component of soybean plant defense against Phytophthora sojae and Macrophomina phaseolina. Phytopathology. 103: 984-994 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Matsuda H, Nakayasu M, Aoki Y, Yamazaki S, Nagano AJ, Yazaki K, Sugiyama A. Diurnal metabolic regulation of isoflavones and soyasaponins in soybean roots. Plant Direct. 4: e00286 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Messina M. Soy and health update: Evaluation of the clinical and epidemiologic literature. Nutrients. 8: 754 (2016)

    Article  PubMed Central  Google Scholar 

  • Messina M, Mejia SB, Cassidy A, Duncan A, Kurzer M, Nagato C, Ronis M, Rowland I, Sievenpiper J, Barnes S. Neither soyfoods nor isoflavones warrant classification as endocrine disruptors: a technical review of the observational and clinical data. Critical Review in Food Science and Nutrition. 1-57 (2021) doi: https://doi.org/10.1080/10408398.2021.1895054

    Article  Google Scholar 

  • Miadokova E. Isoflavonoids - an overview of their biological activities and potential health benefits. Interdisciplinary Toxicology. 2: 211-218 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  • Miladinovic J, Dordevic V, Balesevic-Tubic S, Petrovic K, Ceran M, Cvejic J, Bursac M, Miladinovic D. Increase of isoflavones in the aglycone form in soybeans by targeted crossings of cultivated breeding material. Scientific Reports. 9: 10341 (2019)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moran J, Garrido P, Cabello E, Alonso A, Gonzalez C. Effects of estradiol and genistein on the insulin signaling pathway in the cerebral cortex of aged female rats. Experimental Gerontology. 58: 104-112 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Morgan HE, Dillaway D, Edwards TM. Estrogenicity of soybeans (Glycine max) varies by plant organ and developmental stage. Endocrine Disruptors. 2: e28490 (2014)

    Article  Google Scholar 

  • Mureşan L, Clapa D, Borsai O, Rusu T, WangTTY, Park JB. Potential impacts of soil tillage system on isoflavone concentration of soybean as functional food ingredients. Land. 9: 386 (2020)

    Article  Google Scholar 

  • Nianiou-Obeidat I, Madesis P, Kissoudis C, Voulgari G, Chronopoulou E, Tsaftaris A, Labrou NE. Plant glutathione transferase-mediated stress tolerance: functions and biotechnological applications. Plant Cell Reports. 36: 791-805 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Olanrewaju OS, Glick BR, Babalola OO. Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology and Biotechnology. 33: 197 (2017)

    Article  PubMed  CAS  Google Scholar 

  • Olanrewaju OS, Ayangbenro AS, Glick BR, Babalola OO. Plant health: feedback effect of root exudates-rhizobiome interactions. Applied Microbiology and Biotechnology. 103: 1155-1166 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Pessoa JC, Etcheverry S, Gambino D. Vanadium compounds in medicine. Coordination Chemistry Reviews. 301: 24-48 (2015)

    Article  PubMed  CAS  Google Scholar 

  • Petrussa E, Braidot E, Zancani M, Peresson C, Bertolini A, Patui S, Vianello A. Plant flavonoids–biosynthesis, transport and involvement in stress responses. International Journal of Molecular Science. 14: 14950-14973 (2013)

    Article  CAS  Google Scholar 

  • Ramdath DD, Padhi EM, Sarfaraz S, Renwick S, Duncan AM. Beyond the cholesterol-lowering effect of soy protein: A review of the effects of dietary soy and its constituents on risk factors for cardiovascular disease. Nutrients. 9: 324 (2017)

    Article  PubMed Central  CAS  Google Scholar 

  • Romera FJ, Garcia MJ, Lucena C, Martinez-Medina A, Aparicio MA, Ramos J, Alcantara E, Angulo M, Perez-Vicente R. Induced systemic resistance (ISR) and Fe deficiency responses in dicot plants. Frontiers in Plant Science. 10: 287 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarkar MAR, Watanabe S, Suzuki A, Hashimoto F, Anai T. Identification of novel MYB transcription factors involved in the isoflavone biosynthetic pathway by using the combination screening system with agroinfiltration and hairy root transformation. Plant Biotechnology (Tokyo). 36: 241-251 (2019)

    Article  CAS  Google Scholar 

  • Singh S, Kaur I, Kariyat R. The multifunctional roles of polyphenols in plant-herbivore interactions. International Journal of Molecular Science. 22: 1442 (2021)

    Article  CAS  Google Scholar 

  • Skalicky M, Kubes J, Hejnak V, Tumova L, Martinkova J, Martin J, Hnilickova H. Isoflavones production and possible mechanism of their exudation in Genista tinctoria L. suspension culture after treatment with vanadium compounds. Molecules. 23: 1619 (2018)

    Article  PubMed Central  CAS  Google Scholar 

  • Subramanian S, Stacey G, Yu O. Endogenous isoflavones are essential for the establishment of symbiosis between soybean and Bradyrhizobium japonicum. Plant Journal. 48: 261-273 (2006)

    Article  CAS  Google Scholar 

  • Sugiyama A. The soybean rhizosphere: Metabolites, microbes, and beyond-A review. Journal of Advanced Research. 19: 67-73 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugiyama A, Shitan N, Yazaki K. Involvement of a soybean ATP-binding cassette-type transporter in the secretion of genistein, a signal flavonoid in legume-Rhizobium symbiosis. Plant Physiology. 144: 2000-2008 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugiyama A, Ueda Y, Zushi T, Takase H, Yazaki K. Changes in the bacterial community of soybean rhizospheres during growth in the field. PLoS One. 9: e100709 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sugiyama A, Yamazaki Y, Yamashita K, Takahashi S, Nakayama T, Yazaki K. Developmental and nutritional regulation of isoflavone secretion from soybean roots. Bioscience, Biotechnology and Biochemistry. 80: 89-94 (2016)

    Article  CAS  Google Scholar 

  • Sugiyama A, Yamazaki Y, Hamamoto S, Takase H, Yazaki K. Synthesis and secretion of isoflavones by field-grown soybean. Plant and Cell Physiology. 58: 1594-1600 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Sukumaran A, McDowell Ling T, Chen L, Renaud J, Dhaubhadel S. Isoflavonoid-specific prenyltransferase gene family in soybean: GmPT01, a pterocarpan 2-dimethylallyltransferase involved in glyceollin biosynthesis. Plant Journal. 96: 966-981 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Takahashi S, Watanabe R, Fukushima Y, Fujita N, Noguchi A, Yokoyama R, Nishitani K, Nishino T, Nakayam, T. An isoflavone conjugate-hydrolyzing beta-glucosidase from the roots of soybean (Glycine max) seedlings: purification, gene cloning, phylogenetics, and cellular localization. Journal of Biological Chemistry. 281: 30251-30259 (2006)

    Article  CAS  Google Scholar 

  • Szeja W, Grynkiewicz G, Rusin A. Isoflavones, their glycosides and glycoconjugates. Synthesis and biological activity. Current Organic Chemistry. 21: 218-235 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taneja I, Raju KS, Wahajuddin M. Dietary isoflavones as modulators of drug metabolizing enzymes and transporters: Effect on prescription medicines. Critical Reviews in Food Science and Nutrition. 56: S95-S109 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Testa I, Salvatori C, Di Cara G, Latini A, Frati F, Troiani S, Principi N, Esposito S. Soy-based infant formula: Are phyto-oestrogens still in doubt? Frontiers in Nutrition. 5: 110 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Veitch NC. Isoflavonoids of the leguminosae. Natural Product Reports. 30: 988-1027 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Wang H, Li Y, Li Q, Yan W, Zhang Y, Wu Z, Zhou Q. Plant growth‐promoting rhizobacteria isolation from rhizosphere of submerged macrophytes and their growth‐promoting effect on Vallisneria natans under high sediment organic matter load. Microbial Biotechnology. 14: 726–736 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo D, Hara T, Fujita N, Waki T, Noguchi A, Takahashi S, Nakayama T. Transcription analyses of GmICHG, a gene coding for a beta-glucosidase that catalyzes the specific hydrolysis of isoflavone conjugates in Glycine max (L.) Merr. Plant Science. 208: 10-19 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Yu O, Jung W, Shi J, Croes RA, Fader GM, McGonigle B, Odell JT. Production of the isoflavones genistein and daidzein in non-legume dicot and monocot tissues. Plant Physiology. 124: 781-794 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Bi X, Yu B, Chen D. Isoflavones: Anti-inflammatory benefit and possible caveats. Nutrients. 8: 361 (2016)

    Article  PubMed Central  CAS  Google Scholar 

  • Yuan JP, Liu YB, Peng J, Wang JH, Liu X. Changes of isoflavone profile in the hypocotyls and cotyledons of soybeans during dry heating and germination. Journal of Agricultural and Food Chemistry. 57: 9002-9010 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Zaheer K, Humayoun Akhtar M. An updated review of dietary isoflavones: Nutrition, processing, bioavailability and impacts on human health. Critical Reviews in Food Science and Nutrition. 57: 1280-1293 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Zaklos-Szyda M, Budryn G. The effects of Trifolium pratense L. sprouts' phenolic compounds on cell growth and migration of MDA-MB-231, MCF-7 and HUVEC cells. Nutrients. 12: 257 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  • Zhang J, Ge Y, Han F, Li B, Yan S, Sun J, Wang L. Isoflavone content of soybean cultivars from maturity group 0 to VI grown in Northern and Southern China. Journal of American Oil Chemists' Society. 91: 1019-1028 (2014)

    Article  CAS  Google Scholar 

  • Zhao J. Flavonoid transport mechanisms: how to go, and with whom. Trends in Plant Science. 20: 576-585 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Zhu D, Hettiarachchy NS, Horax R, Chen P. Isoflavone contents in germinated soybean seeds. Plant Foods for Human Nutrition. 60: 147-151 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Zubieta C, He XZ, Dixon RA, Noel JP. Structures of two natural product methyltransferases reveal the basis for substrate specificity in plant O-methyltransferases. Nature Structural Biology. 8: 271-279 (2001)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the National Research Foundation of Korea (NRF-2019R1I1A1A01058109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il-Sup Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, IS. Current perspectives on the beneficial effects of soybean isoflavones and their metabolites on plants. Food Sci Biotechnol 31, 515–526 (2022). https://doi.org/10.1007/s10068-022-01070-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-022-01070-7

Keywords

Navigation